通过改进的机器学习策略筛选功能性小分子,实现高效的全无机过氧化物太阳能电池。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kunlun Jiang, Zhipeng Ma, Jing Lan, Dehao Chen, Wenzhe Li* and Jiandong Fan*, 
{"title":"通过改进的机器学习策略筛选功能性小分子,实现高效的全无机过氧化物太阳能电池。","authors":"Kunlun Jiang,&nbsp;Zhipeng Ma,&nbsp;Jing Lan,&nbsp;Dehao Chen,&nbsp;Wenzhe Li* and Jiandong Fan*,&nbsp;","doi":"10.1021/acsami.4c06226","DOIUrl":null,"url":null,"abstract":"<p >Organic small molecules are proven to be capable of passivating the bulk/interfacial defects in inorganic perovskite solar cells. Considering the burdensome situation to screen the functional small molecules, we employ a modified machine learning (ML) strategy to guide screening suitable small molecules toward efficient solar cells through three modified ML algorithms to construct the prediction model: (i) random forest algorithm (RF), (ii) support vector machine algorithm (SVR), and (iii) XGBoost. Among them, the XGBoost algorithm displays a better overall predictive performance, whereby the <i>R</i><sup>2</sup> index reaches 0.939. Accordingly, eight small molecules are selected to modify the interface of perovskite films, and both the theoretical and experimental results certify that the difluorobenzylamine with additional fluorine atoms has a better interface modification effect among the small molecules containing functional groups, e.g., the benzene ring and amino group. The high accuracy of the modified machine learning model enables us to simplify the small-molecule screening process and form an important step for ongoing developments in perovskite solar cells and other optoelectronic devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 24","pages":"31833–31842"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of Functional Small Molecules via Modified Machine Learning Strategy toward Efficient All-Inorganic Perovskite Solar Cells\",\"authors\":\"Kunlun Jiang,&nbsp;Zhipeng Ma,&nbsp;Jing Lan,&nbsp;Dehao Chen,&nbsp;Wenzhe Li* and Jiandong Fan*,&nbsp;\",\"doi\":\"10.1021/acsami.4c06226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic small molecules are proven to be capable of passivating the bulk/interfacial defects in inorganic perovskite solar cells. Considering the burdensome situation to screen the functional small molecules, we employ a modified machine learning (ML) strategy to guide screening suitable small molecules toward efficient solar cells through three modified ML algorithms to construct the prediction model: (i) random forest algorithm (RF), (ii) support vector machine algorithm (SVR), and (iii) XGBoost. Among them, the XGBoost algorithm displays a better overall predictive performance, whereby the <i>R</i><sup>2</sup> index reaches 0.939. Accordingly, eight small molecules are selected to modify the interface of perovskite films, and both the theoretical and experimental results certify that the difluorobenzylamine with additional fluorine atoms has a better interface modification effect among the small molecules containing functional groups, e.g., the benzene ring and amino group. The high accuracy of the modified machine learning model enables us to simplify the small-molecule screening process and form an important step for ongoing developments in perovskite solar cells and other optoelectronic devices.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 24\",\"pages\":\"31833–31842\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c06226\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c06226","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机小分子被证明能够钝化无机过氧化物太阳能电池中的块体/界面缺陷。考虑到筛选功能性小分子的繁重任务,我们采用了改进的机器学习(ML)策略,通过三种改进的 ML 算法来构建预测模型:(i) 随机森林算法(RF)、(ii) 支持向量机算法(SVR)和 (iii) XGBoost,从而引导筛选合适的小分子,实现高效太阳能电池。其中,XGBoost 算法的整体预测性能较好,R2 指数达到 0.939。理论和实验结果都证明,在含有苯环和氨基等官能团的小分子中,含有额外氟原子的二氟苄胺具有更好的界面改性效果。改进后的机器学习模型的高精确度使我们能够简化小分子筛选过程,为包晶体太阳能电池和其他光电器件的持续发展迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Screening of Functional Small Molecules via Modified Machine Learning Strategy toward Efficient All-Inorganic Perovskite Solar Cells

Screening of Functional Small Molecules via Modified Machine Learning Strategy toward Efficient All-Inorganic Perovskite Solar Cells

Organic small molecules are proven to be capable of passivating the bulk/interfacial defects in inorganic perovskite solar cells. Considering the burdensome situation to screen the functional small molecules, we employ a modified machine learning (ML) strategy to guide screening suitable small molecules toward efficient solar cells through three modified ML algorithms to construct the prediction model: (i) random forest algorithm (RF), (ii) support vector machine algorithm (SVR), and (iii) XGBoost. Among them, the XGBoost algorithm displays a better overall predictive performance, whereby the R2 index reaches 0.939. Accordingly, eight small molecules are selected to modify the interface of perovskite films, and both the theoretical and experimental results certify that the difluorobenzylamine with additional fluorine atoms has a better interface modification effect among the small molecules containing functional groups, e.g., the benzene ring and amino group. The high accuracy of the modified machine learning model enables us to simplify the small-molecule screening process and form an important step for ongoing developments in perovskite solar cells and other optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信