Sheriff A. Balogun, Tesleem O. Abolarinwa, Funmilola A. Adesanya, Collins N. Ateba, Omolola E. Fayemi
{"title":"钴和镍纳米粒子的光谱和抗菌活性:对比分析","authors":"Sheriff A. Balogun, Tesleem O. Abolarinwa, Funmilola A. Adesanya, Collins N. Ateba, Omolola E. Fayemi","doi":"10.1186/s40543-024-00446-0","DOIUrl":null,"url":null,"abstract":"This study aimed to compare the spectroscopy, morphological, electrocatalytic properties, and antibacterial activities of cobalt nanoparticles (CoNPs) with nickel nanoparticles (NiNPs). Cobalt nanoparticles and NiNPs were prepared via a chemical reduction approach and characterized utilizing transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) techniques. The result from XRD and TEM analysis revealed that the synthesized nanoparticles exhibit face-centered cubic with smooth spherical shape, having average particles size of 12 nm (NiNPs) and 18 nm (CoNPs). The electrochemical properties of the nanoparticles were examined via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV results showed that GCE-Ni (35.6 μA) has a higher current response compared to GCE-Co (10.5 μA). The EIS analysis revealed that GCE-Ni (1.39 KΩ) has faster electron transport capability compared to GCE-Co (2.99 KΩ) as indicated in their Rct values. The power density of the synthesized nanoparticles was obtained from their \"knee\" frequency (f°) values, with GCE-Ni (3.16 Hz) having higher f° values compared to GCE-Co (2.00 Hz). The antibacterial activity of the nanoparticles was evaluated against multidrug-resistant Escherichia coli O157, Escherichia coli O177, Salmonella enterica, Staphylococcus aureus, and Vibrio cholerae. The result from the antibacterial study revealed that at low concentrations both CoNPs and NiNPs have significant antibacterial activities against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae. NiNPs showed better antibacterial activities at low concentrations of 61.5, 61.5, 125, 61.5, and 125 µg/mL compared to CoNPs with minimum inhibitory concentrations of 125, 125, 250, 61.5, and 125 µg/mL against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae, respectively. These promising antibacterial activities emphasize the potential of CoNPs and NiNPs as effective antibacterial agents, which could aid in the development of novel antibacterial medicines.","PeriodicalId":14967,"journal":{"name":"Journal of Analytical Science and Technology","volume":"76 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic and antibacterial activities of cobalt and nickel nanoparticles: a comparative analysis\",\"authors\":\"Sheriff A. Balogun, Tesleem O. Abolarinwa, Funmilola A. Adesanya, Collins N. Ateba, Omolola E. Fayemi\",\"doi\":\"10.1186/s40543-024-00446-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to compare the spectroscopy, morphological, electrocatalytic properties, and antibacterial activities of cobalt nanoparticles (CoNPs) with nickel nanoparticles (NiNPs). Cobalt nanoparticles and NiNPs were prepared via a chemical reduction approach and characterized utilizing transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) techniques. The result from XRD and TEM analysis revealed that the synthesized nanoparticles exhibit face-centered cubic with smooth spherical shape, having average particles size of 12 nm (NiNPs) and 18 nm (CoNPs). The electrochemical properties of the nanoparticles were examined via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV results showed that GCE-Ni (35.6 μA) has a higher current response compared to GCE-Co (10.5 μA). The EIS analysis revealed that GCE-Ni (1.39 KΩ) has faster electron transport capability compared to GCE-Co (2.99 KΩ) as indicated in their Rct values. The power density of the synthesized nanoparticles was obtained from their \\\"knee\\\" frequency (f°) values, with GCE-Ni (3.16 Hz) having higher f° values compared to GCE-Co (2.00 Hz). The antibacterial activity of the nanoparticles was evaluated against multidrug-resistant Escherichia coli O157, Escherichia coli O177, Salmonella enterica, Staphylococcus aureus, and Vibrio cholerae. The result from the antibacterial study revealed that at low concentrations both CoNPs and NiNPs have significant antibacterial activities against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae. NiNPs showed better antibacterial activities at low concentrations of 61.5, 61.5, 125, 61.5, and 125 µg/mL compared to CoNPs with minimum inhibitory concentrations of 125, 125, 250, 61.5, and 125 µg/mL against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae, respectively. These promising antibacterial activities emphasize the potential of CoNPs and NiNPs as effective antibacterial agents, which could aid in the development of novel antibacterial medicines.\",\"PeriodicalId\":14967,\"journal\":{\"name\":\"Journal of Analytical Science and Technology\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Science and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40543-024-00446-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40543-024-00446-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Spectroscopic and antibacterial activities of cobalt and nickel nanoparticles: a comparative analysis
This study aimed to compare the spectroscopy, morphological, electrocatalytic properties, and antibacterial activities of cobalt nanoparticles (CoNPs) with nickel nanoparticles (NiNPs). Cobalt nanoparticles and NiNPs were prepared via a chemical reduction approach and characterized utilizing transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) techniques. The result from XRD and TEM analysis revealed that the synthesized nanoparticles exhibit face-centered cubic with smooth spherical shape, having average particles size of 12 nm (NiNPs) and 18 nm (CoNPs). The electrochemical properties of the nanoparticles were examined via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV results showed that GCE-Ni (35.6 μA) has a higher current response compared to GCE-Co (10.5 μA). The EIS analysis revealed that GCE-Ni (1.39 KΩ) has faster electron transport capability compared to GCE-Co (2.99 KΩ) as indicated in their Rct values. The power density of the synthesized nanoparticles was obtained from their "knee" frequency (f°) values, with GCE-Ni (3.16 Hz) having higher f° values compared to GCE-Co (2.00 Hz). The antibacterial activity of the nanoparticles was evaluated against multidrug-resistant Escherichia coli O157, Escherichia coli O177, Salmonella enterica, Staphylococcus aureus, and Vibrio cholerae. The result from the antibacterial study revealed that at low concentrations both CoNPs and NiNPs have significant antibacterial activities against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae. NiNPs showed better antibacterial activities at low concentrations of 61.5, 61.5, 125, 61.5, and 125 µg/mL compared to CoNPs with minimum inhibitory concentrations of 125, 125, 250, 61.5, and 125 µg/mL against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae, respectively. These promising antibacterial activities emphasize the potential of CoNPs and NiNPs as effective antibacterial agents, which could aid in the development of novel antibacterial medicines.
期刊介绍:
The Journal of Analytical Science and Technology (JAST) is a fully open access peer-reviewed scientific journal published under the brand SpringerOpen. JAST was launched by Korea Basic Science Institute in 2010. JAST publishes original research and review articles on all aspects of analytical principles, techniques, methods, procedures, and equipment. JAST’s vision is to be an internationally influential and widely read analytical science journal. Our mission is to inform and stimulate researchers to make significant professional achievements in science. We aim to provide scientists, researchers, and students worldwide with unlimited access to the latest advances of the analytical sciences.