HuiChol Choe, JongHyang Ri, SunAe Pak, YongDo Ri, SongGuk Jong
{"title":"根据外力规则性对时间分式纳维-斯托克斯方程半隐式差分方案的稳定性分析","authors":"HuiChol Choe, JongHyang Ri, SunAe Pak, YongDo Ri, SongGuk Jong","doi":"10.1007/s10915-024-02564-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we discuss the stability of a semi-discrete implicit difference scheme of the time fractional Navier–Stokes equations which is applied in many physical processes, and the convergence of the difference approximate solution. First, we introduce the concept of the average characteristic of the sequence obtained by the difference scheme and the concept of partial stability of the scheme, and then obtain several stability results according to the normality of the external force term. We also prove the convergence of the difference approximation sequence to the unique solution of the equation.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"132 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis According to the Regularity of External Forces of a Semi-Implicit Difference Scheme for Time Fractional Navier–Stokes Equations\",\"authors\":\"HuiChol Choe, JongHyang Ri, SunAe Pak, YongDo Ri, SongGuk Jong\",\"doi\":\"10.1007/s10915-024-02564-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we discuss the stability of a semi-discrete implicit difference scheme of the time fractional Navier–Stokes equations which is applied in many physical processes, and the convergence of the difference approximate solution. First, we introduce the concept of the average characteristic of the sequence obtained by the difference scheme and the concept of partial stability of the scheme, and then obtain several stability results according to the normality of the external force term. We also prove the convergence of the difference approximation sequence to the unique solution of the equation.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02564-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02564-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stability Analysis According to the Regularity of External Forces of a Semi-Implicit Difference Scheme for Time Fractional Navier–Stokes Equations
In this paper, we discuss the stability of a semi-discrete implicit difference scheme of the time fractional Navier–Stokes equations which is applied in many physical processes, and the convergence of the difference approximate solution. First, we introduce the concept of the average characteristic of the sequence obtained by the difference scheme and the concept of partial stability of the scheme, and then obtain several stability results according to the normality of the external force term. We also prove the convergence of the difference approximation sequence to the unique solution of the equation.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.