特殊拉格朗日势能方程中比较原理的反例

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Karl K. Brustad
{"title":"特殊拉格朗日势能方程中比较原理的反例","authors":"Karl K. Brustad","doi":"10.1007/s00526-024-02747-z","DOIUrl":null,"url":null,"abstract":"<p>For each <span>\\(k = 0,\\dots ,n\\)</span> we construct a continuous <i>phase</i> <span>\\(f_k\\)</span>, with <span>\\(f_k(0) = (n-2k)\\frac{\\pi }{2}\\)</span>, and viscosity sub- and supersolutions <span>\\(v_k\\)</span>, <span>\\(u_k\\)</span>, of the elliptic PDE <span>\\(\\sum _{i=1}^n \\arctan (\\lambda _i(\\mathcal {H}w)) = f_k(x)\\)</span> such that <span>\\(v_k-u_k\\)</span> has an isolated maximum at the origin. It has been an open question whether the comparison principle would hold in this second order equation for arbitrary continuous phases <span>\\(f:\\mathbb {R}^n\\supseteq \\Omega \\rightarrow (-n\\pi /2,n\\pi /2)\\)</span>. Our examples show it does not.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterexamples to the comparison principle in the special Lagrangian potential equation\",\"authors\":\"Karl K. Brustad\",\"doi\":\"10.1007/s00526-024-02747-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For each <span>\\\\(k = 0,\\\\dots ,n\\\\)</span> we construct a continuous <i>phase</i> <span>\\\\(f_k\\\\)</span>, with <span>\\\\(f_k(0) = (n-2k)\\\\frac{\\\\pi }{2}\\\\)</span>, and viscosity sub- and supersolutions <span>\\\\(v_k\\\\)</span>, <span>\\\\(u_k\\\\)</span>, of the elliptic PDE <span>\\\\(\\\\sum _{i=1}^n \\\\arctan (\\\\lambda _i(\\\\mathcal {H}w)) = f_k(x)\\\\)</span> such that <span>\\\\(v_k-u_k\\\\)</span> has an isolated maximum at the origin. It has been an open question whether the comparison principle would hold in this second order equation for arbitrary continuous phases <span>\\\\(f:\\\\mathbb {R}^n\\\\supseteq \\\\Omega \\\\rightarrow (-n\\\\pi /2,n\\\\pi /2)\\\\)</span>. Our examples show it does not.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02747-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02747-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个(k = 0,dots,n),我们构建一个连续相(f_k\ ),其中(f_k(0) = (n-2k)\frac\{pi }{2}\),以及粘度子溶体和超溶体(v_k\ )、\(u_k\), of the elliptic PDE \(\sum _{i=1}^n \arctan (\lambda _i(\mathcal {H}w)) = f_k(x)\) such that \(v_k-u_k\) has an isolated maximum at the origin.对于任意连续相 \(f:\mathbb {R}^n\supseteq \Omega \rightarrow (-n\pi /2,n\pi /2)\),比较原则在这个二阶方程中是否成立一直是个悬而未决的问题。我们的例子表明并不是这样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Counterexamples to the comparison principle in the special Lagrangian potential equation

Counterexamples to the comparison principle in the special Lagrangian potential equation

For each \(k = 0,\dots ,n\) we construct a continuous phase \(f_k\), with \(f_k(0) = (n-2k)\frac{\pi }{2}\), and viscosity sub- and supersolutions \(v_k\), \(u_k\), of the elliptic PDE \(\sum _{i=1}^n \arctan (\lambda _i(\mathcal {H}w)) = f_k(x)\) such that \(v_k-u_k\) has an isolated maximum at the origin. It has been an open question whether the comparison principle would hold in this second order equation for arbitrary continuous phases \(f:\mathbb {R}^n\supseteq \Omega \rightarrow (-n\pi /2,n\pi /2)\). Our examples show it does not.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信