{"title":"通过高分辨率地形信息提高泥石流模拟精度:利用 LS-RAPID 和无人机衍生模型的案例研究","authors":"Namgyun Kim, Byonghee Jun","doi":"10.1007/s10346-024-02290-0","DOIUrl":null,"url":null,"abstract":"<p>This study focused on applying numerical simulations to assess damaged areas caused by debris flows, employing the LS-RAPID program while emphasizing the importance of terrain information. Terrain information used in the numerical simulation included a 1:5000 digital terrain map and a digital surface model using an unmanned aerial vehicle. Quantification of the amount of soil that collapsed from the road embankment slope, which is the source of the debris flow, facilitated the computation of the debris flow that closely resembled real-world conditions. In particular, incorporating the high-resolution digital surface model (DSM) with 3-cm topographic information resulted in an interpretation of the actual soil flow damage range that is similar to actual observations of the digital elevation model (DEM), which had 1-m grid topographic information. This difference arises from DSM as it reflects the information of low hills downstream. The range of damage changed as the direction of the debris flow changed because of the low hill. Many variables need adjustment for the accuracy of debris flow numerical simulation. However, the direction and range of flow vary greatly depending on topographic information, highlighting the necessity of applying high-resolution terrain information. The results of debris flow simulations with high-resolution terrain information are expected to improve accuracy and help prepare risk or damage maps.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"48 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing debris flow simulation accuracy through high-resolution terrain information: a case study utilizing LS-RAPID and UAV-derived models\",\"authors\":\"Namgyun Kim, Byonghee Jun\",\"doi\":\"10.1007/s10346-024-02290-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focused on applying numerical simulations to assess damaged areas caused by debris flows, employing the LS-RAPID program while emphasizing the importance of terrain information. Terrain information used in the numerical simulation included a 1:5000 digital terrain map and a digital surface model using an unmanned aerial vehicle. Quantification of the amount of soil that collapsed from the road embankment slope, which is the source of the debris flow, facilitated the computation of the debris flow that closely resembled real-world conditions. In particular, incorporating the high-resolution digital surface model (DSM) with 3-cm topographic information resulted in an interpretation of the actual soil flow damage range that is similar to actual observations of the digital elevation model (DEM), which had 1-m grid topographic information. This difference arises from DSM as it reflects the information of low hills downstream. The range of damage changed as the direction of the debris flow changed because of the low hill. Many variables need adjustment for the accuracy of debris flow numerical simulation. However, the direction and range of flow vary greatly depending on topographic information, highlighting the necessity of applying high-resolution terrain information. The results of debris flow simulations with high-resolution terrain information are expected to improve accuracy and help prepare risk or damage maps.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02290-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02290-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Enhancing debris flow simulation accuracy through high-resolution terrain information: a case study utilizing LS-RAPID and UAV-derived models
This study focused on applying numerical simulations to assess damaged areas caused by debris flows, employing the LS-RAPID program while emphasizing the importance of terrain information. Terrain information used in the numerical simulation included a 1:5000 digital terrain map and a digital surface model using an unmanned aerial vehicle. Quantification of the amount of soil that collapsed from the road embankment slope, which is the source of the debris flow, facilitated the computation of the debris flow that closely resembled real-world conditions. In particular, incorporating the high-resolution digital surface model (DSM) with 3-cm topographic information resulted in an interpretation of the actual soil flow damage range that is similar to actual observations of the digital elevation model (DEM), which had 1-m grid topographic information. This difference arises from DSM as it reflects the information of low hills downstream. The range of damage changed as the direction of the debris flow changed because of the low hill. Many variables need adjustment for the accuracy of debris flow numerical simulation. However, the direction and range of flow vary greatly depending on topographic information, highlighting the necessity of applying high-resolution terrain information. The results of debris flow simulations with high-resolution terrain information are expected to improve accuracy and help prepare risk or damage maps.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database