Abhishek Padalkar, Gabriel Quere, Antonin Raffin, João Silvério, Freek Stulp
{"title":"用共享控制模板指导真实世界中接触式操作任务的强化学习","authors":"Abhishek Padalkar, Gabriel Quere, Antonin Raffin, João Silvério, Freek Stulp","doi":"10.1007/s10514-024-10164-6","DOIUrl":null,"url":null,"abstract":"<div><p>The requirement for a high number of training episodes has been a major limiting factor for the application of <i>Reinforcement Learning</i> (RL) in robotics. Learning skills directly on real robots requires time, causes wear and tear and can lead to damage to the robot and environment due to unsafe exploratory actions. The success of learning skills in simulation and transferring them to real robots has also been limited by the gap between reality and simulation. This is particularly problematic for tasks involving contact with the environment as contact dynamics are hard to model and simulate. In this paper we propose a framework which leverages a shared control framework for modeling known constraints defined by object interactions and task geometry to reduce the state and action spaces and hence the overall dimensionality of the reinforcement learning problem. The unknown task knowledge and actions are learned by a reinforcement learning agent by conducting exploration in the constrained environment. Using a pouring task and grid-clamp placement task (similar to peg-in-hole) as use cases and a 7-DoF arm, we show that our approach can be used to learn directly on the real robot. The pouring task is learned in only 65 episodes (16 min) and the grid-clamp placement task is learned in 75 episodes (17 min) with strong safety guarantees and simple reward functions, greatly alleviating the need for simulation.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 4-5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10164-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Guiding real-world reinforcement learning for in-contact manipulation tasks with Shared Control Templates\",\"authors\":\"Abhishek Padalkar, Gabriel Quere, Antonin Raffin, João Silvério, Freek Stulp\",\"doi\":\"10.1007/s10514-024-10164-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The requirement for a high number of training episodes has been a major limiting factor for the application of <i>Reinforcement Learning</i> (RL) in robotics. Learning skills directly on real robots requires time, causes wear and tear and can lead to damage to the robot and environment due to unsafe exploratory actions. The success of learning skills in simulation and transferring them to real robots has also been limited by the gap between reality and simulation. This is particularly problematic for tasks involving contact with the environment as contact dynamics are hard to model and simulate. In this paper we propose a framework which leverages a shared control framework for modeling known constraints defined by object interactions and task geometry to reduce the state and action spaces and hence the overall dimensionality of the reinforcement learning problem. The unknown task knowledge and actions are learned by a reinforcement learning agent by conducting exploration in the constrained environment. Using a pouring task and grid-clamp placement task (similar to peg-in-hole) as use cases and a 7-DoF arm, we show that our approach can be used to learn directly on the real robot. The pouring task is learned in only 65 episodes (16 min) and the grid-clamp placement task is learned in 75 episodes (17 min) with strong safety guarantees and simple reward functions, greatly alleviating the need for simulation.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"48 4-5\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-024-10164-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10164-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10164-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Guiding real-world reinforcement learning for in-contact manipulation tasks with Shared Control Templates
The requirement for a high number of training episodes has been a major limiting factor for the application of Reinforcement Learning (RL) in robotics. Learning skills directly on real robots requires time, causes wear and tear and can lead to damage to the robot and environment due to unsafe exploratory actions. The success of learning skills in simulation and transferring them to real robots has also been limited by the gap between reality and simulation. This is particularly problematic for tasks involving contact with the environment as contact dynamics are hard to model and simulate. In this paper we propose a framework which leverages a shared control framework for modeling known constraints defined by object interactions and task geometry to reduce the state and action spaces and hence the overall dimensionality of the reinforcement learning problem. The unknown task knowledge and actions are learned by a reinforcement learning agent by conducting exploration in the constrained environment. Using a pouring task and grid-clamp placement task (similar to peg-in-hole) as use cases and a 7-DoF arm, we show that our approach can be used to learn directly on the real robot. The pouring task is learned in only 65 episodes (16 min) and the grid-clamp placement task is learned in 75 episodes (17 min) with strong safety guarantees and simple reward functions, greatly alleviating the need for simulation.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.