图上的爱因斯坦-标量场李奇诺维茨方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Leilei Cui, Yong Liu, Chunhua Wang, Jun Wang, Wen Yang
{"title":"图上的爱因斯坦-标量场李奇诺维茨方程","authors":"Leilei Cui, Yong Liu, Chunhua Wang, Jun Wang, Wen Yang","doi":"10.1007/s00526-024-02737-1","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the Einstein-scalar field Lichnerowicz equation </p><span>$$\\begin{aligned} -\\Delta u+hu=Bu^{p-1}+Au^{-p-1} \\end{aligned}$$</span><p>on any connected finite graph <span>\\(G=(V,E)\\)</span>, where <i>A</i>, <i>B</i>, <i>h</i> are given functions on <i>V</i> with <span>\\(A\\ge 0\\)</span>, <span>\\(A\\not \\equiv 0\\)</span> on <i>V</i>, and <span>\\(p&gt;2\\)</span> is a constant. By using the classical variational method, topological degree theory and heat-flow method, we provide a systematical study on this equation by providing the existence results for each case: positive, negative and null Yamabe-scalar field conformal invariant, namely <span>\\(h&gt;0\\)</span>, <span>\\(h&lt;0\\)</span> and <span>\\(h=0\\)</span> respectively.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Einstein-scalar field Lichnerowicz equations on graphs\",\"authors\":\"Leilei Cui, Yong Liu, Chunhua Wang, Jun Wang, Wen Yang\",\"doi\":\"10.1007/s00526-024-02737-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we consider the Einstein-scalar field Lichnerowicz equation </p><span>$$\\\\begin{aligned} -\\\\Delta u+hu=Bu^{p-1}+Au^{-p-1} \\\\end{aligned}$$</span><p>on any connected finite graph <span>\\\\(G=(V,E)\\\\)</span>, where <i>A</i>, <i>B</i>, <i>h</i> are given functions on <i>V</i> with <span>\\\\(A\\\\ge 0\\\\)</span>, <span>\\\\(A\\\\not \\\\equiv 0\\\\)</span> on <i>V</i>, and <span>\\\\(p&gt;2\\\\)</span> is a constant. By using the classical variational method, topological degree theory and heat-flow method, we provide a systematical study on this equation by providing the existence results for each case: positive, negative and null Yamabe-scalar field conformal invariant, namely <span>\\\\(h&gt;0\\\\)</span>, <span>\\\\(h&lt;0\\\\)</span> and <span>\\\\(h=0\\\\)</span> respectively.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02737-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02737-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑在任意连通的有限图\(G=(V,E)\)上的爱因斯坦-标量场李奇诺维茨方程 $$begin{aligned} -\Delta u+hu=Bu^{p-1}+Au^{-p-1} \end{aligned}$$,其中 A、B、h 是 V 上的给定函数,V 上有\(A\ge 0\)、\(A\not \equiv 0\) 和\(p>;2)是一个常数。通过使用经典的变分法、拓扑度理论和热流法,我们对该方程进行了系统的研究,提供了正Yamabe-scalar场保角不变性、负Yamabe-scalar场保角不变性和空Yamabe-scalar场保角不变性三种情况下的存在结果,即分别为\(h>0\)、\(h<0\)和\(h=0\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Einstein-scalar field Lichnerowicz equations on graphs

In this article, we consider the Einstein-scalar field Lichnerowicz equation

$$\begin{aligned} -\Delta u+hu=Bu^{p-1}+Au^{-p-1} \end{aligned}$$

on any connected finite graph \(G=(V,E)\), where ABh are given functions on V with \(A\ge 0\), \(A\not \equiv 0\) on V, and \(p>2\) is a constant. By using the classical variational method, topological degree theory and heat-flow method, we provide a systematical study on this equation by providing the existence results for each case: positive, negative and null Yamabe-scalar field conformal invariant, namely \(h>0\), \(h<0\) and \(h=0\) respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信