{"title":"构造效应对青藏高原东北部滑坡坝形成和特征的影响:中国白龙江流域的案例研究","authors":"Guan Chen, Jiacheng Jin, Xingmin Meng, Tianjun Qi, Wei Shi, Yan Chong, Yunpeng Yang, Shiqiang Bian","doi":"10.1007/s10346-024-02273-1","DOIUrl":null,"url":null,"abstract":"<p>Hazards created by the landslide damming of rivers have become common in tectonically active mountainous areas. However, it remains unclear how tectonic effects may influence the formation and characteristics of landslide dams. The purpose of this paper is to explore how tectonic effects impact the drivers, geomorphic features, and activity characteristics of landslide dams along a fault zone. We investigated 83 landslide dams clustered along a fault zone in the Bailong River Basin. Most of the dams are located in areas of high tectonic stress, resulting from the rapid river incision and destruction of slope structure caused by intense tectonic activities in these areas. Statistical analysis, InSAR monitoring, and field investigation revealed that different tectonic effects were associated with significant differences in the geomorphic features, activity characteristics, and controlling factors of the landslide dams. Thus, we identified three distinct patterns of landslide dams in tectonically active mountainous areas: (1) Topography-driven landslide dams are caused by rapid rock uplift and river incision. Here, the steep terrain enhances the development of small landslides, the narrowness of the channels favors river damming, and the residual deposits on the hillslope remain active. (2) Tectonic activities promote the development of structural planes in the rock mass and reduce its strength, ultimately forming structural plane-controlled landslide dams. Although their volumes are not very large, the strong erosion resistance of rockslides can cause river damming and maintain the stability of deposits. (3) Fractured rock mass-controlled landslide dams are composed of broken rock and fault gouge. The extremely low strength of these materials allows them to form very large landslides that can easily dam the river, and maintain a slow-moving state. Through a geomorphological and geological model, our study offers new insights and enhances the understanding of the formation and characteristics of landslide dams induced by tectonic activity in mountainous regions.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"75 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of tectonic effects on the formation and characteristics of landslide dams on the NE Tibetan Plateau: a case study in the Bailong River Basin, China\",\"authors\":\"Guan Chen, Jiacheng Jin, Xingmin Meng, Tianjun Qi, Wei Shi, Yan Chong, Yunpeng Yang, Shiqiang Bian\",\"doi\":\"10.1007/s10346-024-02273-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hazards created by the landslide damming of rivers have become common in tectonically active mountainous areas. However, it remains unclear how tectonic effects may influence the formation and characteristics of landslide dams. The purpose of this paper is to explore how tectonic effects impact the drivers, geomorphic features, and activity characteristics of landslide dams along a fault zone. We investigated 83 landslide dams clustered along a fault zone in the Bailong River Basin. Most of the dams are located in areas of high tectonic stress, resulting from the rapid river incision and destruction of slope structure caused by intense tectonic activities in these areas. Statistical analysis, InSAR monitoring, and field investigation revealed that different tectonic effects were associated with significant differences in the geomorphic features, activity characteristics, and controlling factors of the landslide dams. Thus, we identified three distinct patterns of landslide dams in tectonically active mountainous areas: (1) Topography-driven landslide dams are caused by rapid rock uplift and river incision. Here, the steep terrain enhances the development of small landslides, the narrowness of the channels favors river damming, and the residual deposits on the hillslope remain active. (2) Tectonic activities promote the development of structural planes in the rock mass and reduce its strength, ultimately forming structural plane-controlled landslide dams. Although their volumes are not very large, the strong erosion resistance of rockslides can cause river damming and maintain the stability of deposits. (3) Fractured rock mass-controlled landslide dams are composed of broken rock and fault gouge. The extremely low strength of these materials allows them to form very large landslides that can easily dam the river, and maintain a slow-moving state. Through a geomorphological and geological model, our study offers new insights and enhances the understanding of the formation and characteristics of landslide dams induced by tectonic activity in mountainous regions.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02273-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02273-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Influence of tectonic effects on the formation and characteristics of landslide dams on the NE Tibetan Plateau: a case study in the Bailong River Basin, China
Hazards created by the landslide damming of rivers have become common in tectonically active mountainous areas. However, it remains unclear how tectonic effects may influence the formation and characteristics of landslide dams. The purpose of this paper is to explore how tectonic effects impact the drivers, geomorphic features, and activity characteristics of landslide dams along a fault zone. We investigated 83 landslide dams clustered along a fault zone in the Bailong River Basin. Most of the dams are located in areas of high tectonic stress, resulting from the rapid river incision and destruction of slope structure caused by intense tectonic activities in these areas. Statistical analysis, InSAR monitoring, and field investigation revealed that different tectonic effects were associated with significant differences in the geomorphic features, activity characteristics, and controlling factors of the landslide dams. Thus, we identified three distinct patterns of landslide dams in tectonically active mountainous areas: (1) Topography-driven landslide dams are caused by rapid rock uplift and river incision. Here, the steep terrain enhances the development of small landslides, the narrowness of the channels favors river damming, and the residual deposits on the hillslope remain active. (2) Tectonic activities promote the development of structural planes in the rock mass and reduce its strength, ultimately forming structural plane-controlled landslide dams. Although their volumes are not very large, the strong erosion resistance of rockslides can cause river damming and maintain the stability of deposits. (3) Fractured rock mass-controlled landslide dams are composed of broken rock and fault gouge. The extremely low strength of these materials allows them to form very large landslides that can easily dam the river, and maintain a slow-moving state. Through a geomorphological and geological model, our study offers new insights and enhances the understanding of the formation and characteristics of landslide dams induced by tectonic activity in mountainous regions.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database