{"title":"短玻璃纤维、石墨、聚四氟乙烯和 B4C 增强 EP 复合材料在油润滑条件下的摩擦学特性","authors":"S. Xiong, Hong Kang","doi":"10.1007/s40799-024-00723-y","DOIUrl":null,"url":null,"abstract":"<div><p>Tribological performance of epoxy (EP) composites reinforced with short glass fibers (SGF), graphite, polytetrafluoroethylene (PTFE), and B<sub>4</sub>C nanoparticles was investigated under oil lubrication. The effects of different types of SGF, graphite, PTFE, and B<sub>4</sub>C nanoparticles on the friction and wear properties of EP were examined using a ball-on-block machine. The worn surfaces were characterized using optical microscopy, SEM-EDX, XPS, and TEM. The anti-wear mechanisms were proposed based on the experimental observations and analysis. The results demonstrate that the addition of SGF significantly reduces wear and friction in the EP matrix. In contrast, the incorporation of B<sub>4</sub>C nanoparticles and other solid lubricants does not have a significant effect on friction and wear. The remarkable tribological properties observed in the SGF-reinforced EP composites can be attributed to the superior load-bearing capabilities and wear durability of SGF. These fibers effectively withstand the load and exhibit excellent durability during sliding, resulting in reduced wear and friction.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"49 1","pages":"169 - 179"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological Properties of EP Composites Reinforced with Short Glass Fiber, Graphite, PTFE and B4C Under Oil Lubrication\",\"authors\":\"S. Xiong, Hong Kang\",\"doi\":\"10.1007/s40799-024-00723-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tribological performance of epoxy (EP) composites reinforced with short glass fibers (SGF), graphite, polytetrafluoroethylene (PTFE), and B<sub>4</sub>C nanoparticles was investigated under oil lubrication. The effects of different types of SGF, graphite, PTFE, and B<sub>4</sub>C nanoparticles on the friction and wear properties of EP were examined using a ball-on-block machine. The worn surfaces were characterized using optical microscopy, SEM-EDX, XPS, and TEM. The anti-wear mechanisms were proposed based on the experimental observations and analysis. The results demonstrate that the addition of SGF significantly reduces wear and friction in the EP matrix. In contrast, the incorporation of B<sub>4</sub>C nanoparticles and other solid lubricants does not have a significant effect on friction and wear. The remarkable tribological properties observed in the SGF-reinforced EP composites can be attributed to the superior load-bearing capabilities and wear durability of SGF. These fibers effectively withstand the load and exhibit excellent durability during sliding, resulting in reduced wear and friction.</p></div>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"49 1\",\"pages\":\"169 - 179\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-024-00723-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-024-00723-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
研究了用短玻璃纤维(SGF)、石墨、聚四氟乙烯(PTFE)和 B4C 纳米粒子增强的环氧树脂(EP)复合材料在油润滑条件下的摩擦学性能。使用滚珠对撞机检验了不同类型的 SGF、石墨、聚四氟乙烯和 B4C 纳米粒子对 EP 摩擦和磨损性能的影响。使用光学显微镜、SEM-EDX、XPS 和 TEM 对磨损表面进行了表征。根据实验观察和分析,提出了抗磨损机理。结果表明,添加 SGF 能显著降低 EP 基体中的磨损和摩擦。相比之下,加入 B4C 纳米粒子和其他固体润滑剂对摩擦和磨损的影响不大。在 SGF 增强 EP 复合材料中观察到的非凡摩擦学特性可归因于 SGF 卓越的承载能力和耐磨性。这些纤维在滑动过程中能有效承受载荷并表现出卓越的耐久性,从而减少了磨损和摩擦。
Tribological Properties of EP Composites Reinforced with Short Glass Fiber, Graphite, PTFE and B4C Under Oil Lubrication
Tribological performance of epoxy (EP) composites reinforced with short glass fibers (SGF), graphite, polytetrafluoroethylene (PTFE), and B4C nanoparticles was investigated under oil lubrication. The effects of different types of SGF, graphite, PTFE, and B4C nanoparticles on the friction and wear properties of EP were examined using a ball-on-block machine. The worn surfaces were characterized using optical microscopy, SEM-EDX, XPS, and TEM. The anti-wear mechanisms were proposed based on the experimental observations and analysis. The results demonstrate that the addition of SGF significantly reduces wear and friction in the EP matrix. In contrast, the incorporation of B4C nanoparticles and other solid lubricants does not have a significant effect on friction and wear. The remarkable tribological properties observed in the SGF-reinforced EP composites can be attributed to the superior load-bearing capabilities and wear durability of SGF. These fibers effectively withstand the load and exhibit excellent durability during sliding, resulting in reduced wear and friction.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.