{"title":"以效用为导向的重新排名与反事实背景","authors":"Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Qing Liu, Weinan Zhang, Yong Yu","doi":"10.1145/3671004","DOIUrl":null,"url":null,"abstract":"<p>As a critical task for large-scale commercial recommender systems, reranking rearranges items in the initial ranking lists from the previous ranking stage to better meet users’ demands. Foundational work in reranking has shown the potential of improving recommendation results by uncovering mutual influence among items. However, rather than considering the context of initial lists as most existing methods do, an ideal reranking algorithm should consider the <i>counterfactual context</i> – the position and the alignment of the items in the <i>reranked lists</i>. In this work, we propose a novel pairwise reranking framework, Utility-oriented Reranking with Counterfactual Context (URCC), which maximizes the overall utility after reranking efficiently. Specifically, we first design a utility-oriented evaluator, which applies Bi-LSTM and graph attention mechanism to estimate the listwise utility via the <i>counterfactual context</i> modeling. Then, under the guidance of the evaluator, we propose a pairwise reranker model to find the most suitable position for each item by swapping misplaced item pairs. Extensive experiments on two benchmark datasets and a proprietary real-world dataset demonstrate that URCC significantly outperforms the state-of-the-art models in terms of both relevance-based metrics and utility-based metrics.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"26 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility-oriented Reranking with Counterfactual Context\",\"authors\":\"Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Qing Liu, Weinan Zhang, Yong Yu\",\"doi\":\"10.1145/3671004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a critical task for large-scale commercial recommender systems, reranking rearranges items in the initial ranking lists from the previous ranking stage to better meet users’ demands. Foundational work in reranking has shown the potential of improving recommendation results by uncovering mutual influence among items. However, rather than considering the context of initial lists as most existing methods do, an ideal reranking algorithm should consider the <i>counterfactual context</i> – the position and the alignment of the items in the <i>reranked lists</i>. In this work, we propose a novel pairwise reranking framework, Utility-oriented Reranking with Counterfactual Context (URCC), which maximizes the overall utility after reranking efficiently. Specifically, we first design a utility-oriented evaluator, which applies Bi-LSTM and graph attention mechanism to estimate the listwise utility via the <i>counterfactual context</i> modeling. Then, under the guidance of the evaluator, we propose a pairwise reranker model to find the most suitable position for each item by swapping misplaced item pairs. Extensive experiments on two benchmark datasets and a proprietary real-world dataset demonstrate that URCC significantly outperforms the state-of-the-art models in terms of both relevance-based metrics and utility-based metrics.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3671004\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3671004","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Utility-oriented Reranking with Counterfactual Context
As a critical task for large-scale commercial recommender systems, reranking rearranges items in the initial ranking lists from the previous ranking stage to better meet users’ demands. Foundational work in reranking has shown the potential of improving recommendation results by uncovering mutual influence among items. However, rather than considering the context of initial lists as most existing methods do, an ideal reranking algorithm should consider the counterfactual context – the position and the alignment of the items in the reranked lists. In this work, we propose a novel pairwise reranking framework, Utility-oriented Reranking with Counterfactual Context (URCC), which maximizes the overall utility after reranking efficiently. Specifically, we first design a utility-oriented evaluator, which applies Bi-LSTM and graph attention mechanism to estimate the listwise utility via the counterfactual context modeling. Then, under the guidance of the evaluator, we propose a pairwise reranker model to find the most suitable position for each item by swapping misplaced item pairs. Extensive experiments on two benchmark datasets and a proprietary real-world dataset demonstrate that URCC significantly outperforms the state-of-the-art models in terms of both relevance-based metrics and utility-based metrics.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.