{"title":"KdV 和非 KdV 型三阶算子的卡勒曼估计及其应用","authors":"Serena Federico","doi":"10.1007/s10231-024-01467-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study a class of variable coefficient third order partial differential operators on <span>\\({\\mathbb {R}}^{n+1}\\)</span>, containing, as a subclass, some variable coefficient operators of KdV-type in any space dimension. For such a class, as well as for the adjoint class, we obtain a Carleman estimate and the local solvability at any point of <span>\\({\\mathbb {R}}^{n+1}\\)</span>. A discussion of possible applications in the context of dispersive equations is provided.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"203 6","pages":"2801 - 2823"},"PeriodicalIF":1.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01467-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Carleman estimates for third order operators of KdV and non KdV-type and applications\",\"authors\":\"Serena Federico\",\"doi\":\"10.1007/s10231-024-01467-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study a class of variable coefficient third order partial differential operators on <span>\\\\({\\\\mathbb {R}}^{n+1}\\\\)</span>, containing, as a subclass, some variable coefficient operators of KdV-type in any space dimension. For such a class, as well as for the adjoint class, we obtain a Carleman estimate and the local solvability at any point of <span>\\\\({\\\\mathbb {R}}^{n+1}\\\\)</span>. A discussion of possible applications in the context of dispersive equations is provided.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"203 6\",\"pages\":\"2801 - 2823\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-024-01467-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01467-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01467-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Carleman estimates for third order operators of KdV and non KdV-type and applications
In this paper we study a class of variable coefficient third order partial differential operators on \({\mathbb {R}}^{n+1}\), containing, as a subclass, some variable coefficient operators of KdV-type in any space dimension. For such a class, as well as for the adjoint class, we obtain a Carleman estimate and the local solvability at any point of \({\mathbb {R}}^{n+1}\). A discussion of possible applications in the context of dispersive equations is provided.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.