Jindong Wang, Zhanyang Wu, Yi Chen, Yuhong Xie, Zhongrong Zhou
{"title":"通过仿生鸽翼筛设计提高锤式粉碎机的效率","authors":"Jindong Wang, Zhanyang Wu, Yi Chen, Yuhong Xie, Zhongrong Zhou","doi":"10.1007/s42235-024-00551-1","DOIUrl":null,"url":null,"abstract":"<div><p>Hammer mill is widely used in the feed processing industry. During its operation, the material is thrown against the inner wall of the sieve after being broken by the hammer. Limited by the annular structure sieve, the grinded material tends to produce a “air- material circulation layer” on the inner wall of the sieve, leading to problems such as low grinding efficiency and high grinding energy consumption. Considering the disruptive characteristics of the special profile structure of a pigeon’s wing on the airflow field, we extract the geometric characteristics of the coupling element and optimize the related structural parameters. Based on the principles of bionics, a new wing sieve is then designed, and its efficient grinding mechanism is studied. Compared to the commercial sieve, the experimental results indicate the bio-inspired sieve can significantly improve the material productivity and grinding quality.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 5","pages":"2366 - 2378"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency Enhancement in Hammer Mills through Biomimetic Pigeon Wing Sieve Design\",\"authors\":\"Jindong Wang, Zhanyang Wu, Yi Chen, Yuhong Xie, Zhongrong Zhou\",\"doi\":\"10.1007/s42235-024-00551-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hammer mill is widely used in the feed processing industry. During its operation, the material is thrown against the inner wall of the sieve after being broken by the hammer. Limited by the annular structure sieve, the grinded material tends to produce a “air- material circulation layer” on the inner wall of the sieve, leading to problems such as low grinding efficiency and high grinding energy consumption. Considering the disruptive characteristics of the special profile structure of a pigeon’s wing on the airflow field, we extract the geometric characteristics of the coupling element and optimize the related structural parameters. Based on the principles of bionics, a new wing sieve is then designed, and its efficient grinding mechanism is studied. Compared to the commercial sieve, the experimental results indicate the bio-inspired sieve can significantly improve the material productivity and grinding quality.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 5\",\"pages\":\"2366 - 2378\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00551-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00551-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficiency Enhancement in Hammer Mills through Biomimetic Pigeon Wing Sieve Design
Hammer mill is widely used in the feed processing industry. During its operation, the material is thrown against the inner wall of the sieve after being broken by the hammer. Limited by the annular structure sieve, the grinded material tends to produce a “air- material circulation layer” on the inner wall of the sieve, leading to problems such as low grinding efficiency and high grinding energy consumption. Considering the disruptive characteristics of the special profile structure of a pigeon’s wing on the airflow field, we extract the geometric characteristics of the coupling element and optimize the related structural parameters. Based on the principles of bionics, a new wing sieve is then designed, and its efficient grinding mechanism is studied. Compared to the commercial sieve, the experimental results indicate the bio-inspired sieve can significantly improve the material productivity and grinding quality.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.