利用归一化流动的高维最大熵相空间断层成像技术

Austin Hoover, Jonathan C. Wong
{"title":"利用归一化流动的高维最大熵相空间断层成像技术","authors":"Austin Hoover, Jonathan C. Wong","doi":"arxiv-2406.00236","DOIUrl":null,"url":null,"abstract":"Particle accelerators generate charged particle beams with tailored\ndistributions in six-dimensional (6D) position-momentum space (phase space).\nKnowledge of the phase space distribution enables model-based beam optimization\nand control. In the absence of direct measurements, the distribution must be\ntomographically reconstructed from its projections. In this paper, we highlight\nthat such problems can be severely underdetermined and that entropy\nmaximization is the most conservative solution strategy. We leverage\n\\textit{normalizing flows} -- invertible generative models -- to extend\nmaximum-entropy tomography to 6D phase space and perform numerical experiments\nto validate the model performance. Our numerical experiments demonstrate that\nflow-based entropy estimates are consistent with 2D maximum-entropy solutions\nand that normalizing flows can fit complex 6D phase space distributions to\nlarge measurement sets in reasonable time.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional maximum-entropy phase space tomography using normalizing flows\",\"authors\":\"Austin Hoover, Jonathan C. Wong\",\"doi\":\"arxiv-2406.00236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle accelerators generate charged particle beams with tailored\\ndistributions in six-dimensional (6D) position-momentum space (phase space).\\nKnowledge of the phase space distribution enables model-based beam optimization\\nand control. In the absence of direct measurements, the distribution must be\\ntomographically reconstructed from its projections. In this paper, we highlight\\nthat such problems can be severely underdetermined and that entropy\\nmaximization is the most conservative solution strategy. We leverage\\n\\\\textit{normalizing flows} -- invertible generative models -- to extend\\nmaximum-entropy tomography to 6D phase space and perform numerical experiments\\nto validate the model performance. Our numerical experiments demonstrate that\\nflow-based entropy estimates are consistent with 2D maximum-entropy solutions\\nand that normalizing flows can fit complex 6D phase space distributions to\\nlarge measurement sets in reasonable time.\",\"PeriodicalId\":501318,\"journal\":{\"name\":\"arXiv - PHYS - Accelerator Physics\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.00236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒子加速器产生的带电粒子束在六维(6D)位置-动量空间(相空间)中具有定制的分布。在缺乏直接测量的情况下,必须从其投影来重建相空间分布。在本文中,我们强调此类问题可能会严重欠定,而熵最大化是最保守的求解策略。我们利用textit{normalizing flows}--可逆生成模型--将最大熵层析扩展到6D相空间,并通过数值实验验证了模型的性能。我们的数值实验证明,基于流的熵估计与二维最大熵解是一致的,归一化流可以在合理的时间内将复杂的六维相空间分布拟合到大量的测量集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-dimensional maximum-entropy phase space tomography using normalizing flows
Particle accelerators generate charged particle beams with tailored distributions in six-dimensional (6D) position-momentum space (phase space). Knowledge of the phase space distribution enables model-based beam optimization and control. In the absence of direct measurements, the distribution must be tomographically reconstructed from its projections. In this paper, we highlight that such problems can be severely underdetermined and that entropy maximization is the most conservative solution strategy. We leverage \textit{normalizing flows} -- invertible generative models -- to extend maximum-entropy tomography to 6D phase space and perform numerical experiments to validate the model performance. Our numerical experiments demonstrate that flow-based entropy estimates are consistent with 2D maximum-entropy solutions and that normalizing flows can fit complex 6D phase space distributions to large measurement sets in reasonable time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信