{"title":"利用机器学习模型预测沼气-氧气混合物的引爆单元大小","authors":"S. Siatkowski, K. Wacko, J. Kindracki","doi":"10.1007/s00193-024-01164-7","DOIUrl":null,"url":null,"abstract":"<p>Detonation cell size is a very important parameter describing the detonation process, used both for explosion safety analysis and for the design of detonation combustion chambers. Typically it has been studied either experimentally or by CFD simulations; both options are costly in terms of money and time. However, progress in the machine learning (ML) methods opened a third way of obtaining cell size. When trained properly, such models are capable of giving rapid, accurate predictions. Utilization of machine learning in the combustion field is gaining more attention from the research community. In this study, the process of training, testing, and evaluation of three different machine learning models for predicting biogas–oxygen mixture detonation cell size is presented. The models include: linear regression (LR), support vector regression (SVR), and neural network (NN). The dataset used for training and testing comes from the experimental studies conducted previously by the authors. It was shown that all the models give very good results with support vector regression proving to be the best.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting detonation cell size of biogas–oxygen mixtures using machine learning models\",\"authors\":\"S. Siatkowski, K. Wacko, J. Kindracki\",\"doi\":\"10.1007/s00193-024-01164-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Detonation cell size is a very important parameter describing the detonation process, used both for explosion safety analysis and for the design of detonation combustion chambers. Typically it has been studied either experimentally or by CFD simulations; both options are costly in terms of money and time. However, progress in the machine learning (ML) methods opened a third way of obtaining cell size. When trained properly, such models are capable of giving rapid, accurate predictions. Utilization of machine learning in the combustion field is gaining more attention from the research community. In this study, the process of training, testing, and evaluation of three different machine learning models for predicting biogas–oxygen mixture detonation cell size is presented. The models include: linear regression (LR), support vector regression (SVR), and neural network (NN). The dataset used for training and testing comes from the experimental studies conducted previously by the authors. It was shown that all the models give very good results with support vector regression proving to be the best.</p>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00193-024-01164-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00193-024-01164-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Predicting detonation cell size of biogas–oxygen mixtures using machine learning models
Detonation cell size is a very important parameter describing the detonation process, used both for explosion safety analysis and for the design of detonation combustion chambers. Typically it has been studied either experimentally or by CFD simulations; both options are costly in terms of money and time. However, progress in the machine learning (ML) methods opened a third way of obtaining cell size. When trained properly, such models are capable of giving rapid, accurate predictions. Utilization of machine learning in the combustion field is gaining more attention from the research community. In this study, the process of training, testing, and evaluation of three different machine learning models for predicting biogas–oxygen mixture detonation cell size is presented. The models include: linear regression (LR), support vector regression (SVR), and neural network (NN). The dataset used for training and testing comes from the experimental studies conducted previously by the authors. It was shown that all the models give very good results with support vector regression proving to be the best.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.