{"title":"一类准线性椭圆问题的无限多解","authors":"Xiao-yao Jia, Zhen-luo Lou","doi":"10.1007/s10255-024-1091-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the following quasi-linear elliptic equation</p><div><div><span>$$\\left\\{{\\matrix{{- \\,{\\rm{div(}}\\phi {\\rm{(}}\\left| {\\nabla u} \\right|{\\rm{)}}\\nabla u{\\rm{) = \\lambda}}\\psi {\\rm{(}}\\left| u \\right|{\\rm{)}}u + \\,\\varphi {\\rm{(}}\\left| u \\right|{\\rm{)}}u,\\,\\,\\,\\,{\\rm{in}}\\,\\,\\,\\Omega,\\,\\,\\,} \\cr {u = 0,\\,\\,\\,\\,\\,\\,\\,{\\rm{on}}\\,\\,\\partial \\Omega {\\rm{,}}\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,} \\cr}} \\right.$$</span></div></div><p>where Ω ⊂ ℝ<sup><i>N</i></sup> is a bounded domain, λ > 0 is a parameter. The function <i>ψ</i>(∣<i>t</i>∣)<i>t</i> is the subcritical term, and <i>ϕ</i>(∣<i>t</i>∣)<i>t</i> is the critical Orlicz-Sobolev growth term with respect to <i>φ</i>. Under appropriate conditions on <i>φ</i>, <i>ψ</i> and <i>ϕ</i>, we prove the existence of infinitely many weak solutions for quasi-linear elliptic equation, for <i>λ</i> ∈ (0, <i>λ</i><sub>0</sub>), where <i>λ</i><sub>0</sub> > 0 is a fixed constant.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"728 - 743"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely Many Solutions for a Class of Quasi-linear Elliptic Problem\",\"authors\":\"Xiao-yao Jia, Zhen-luo Lou\",\"doi\":\"10.1007/s10255-024-1091-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the following quasi-linear elliptic equation</p><div><div><span>$$\\\\left\\\\{{\\\\matrix{{- \\\\,{\\\\rm{div(}}\\\\phi {\\\\rm{(}}\\\\left| {\\\\nabla u} \\\\right|{\\\\rm{)}}\\\\nabla u{\\\\rm{) = \\\\lambda}}\\\\psi {\\\\rm{(}}\\\\left| u \\\\right|{\\\\rm{)}}u + \\\\,\\\\varphi {\\\\rm{(}}\\\\left| u \\\\right|{\\\\rm{)}}u,\\\\,\\\\,\\\\,\\\\,{\\\\rm{in}}\\\\,\\\\,\\\\,\\\\Omega,\\\\,\\\\,\\\\,} \\\\cr {u = 0,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,{\\\\rm{on}}\\\\,\\\\,\\\\partial \\\\Omega {\\\\rm{,}}\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,} \\\\cr}} \\\\right.$$</span></div></div><p>where Ω ⊂ ℝ<sup><i>N</i></sup> is a bounded domain, λ > 0 is a parameter. The function <i>ψ</i>(∣<i>t</i>∣)<i>t</i> is the subcritical term, and <i>ϕ</i>(∣<i>t</i>∣)<i>t</i> is the critical Orlicz-Sobolev growth term with respect to <i>φ</i>. Under appropriate conditions on <i>φ</i>, <i>ψ</i> and <i>ϕ</i>, we prove the existence of infinitely many weak solutions for quasi-linear elliptic equation, for <i>λ</i> ∈ (0, <i>λ</i><sub>0</sub>), where <i>λ</i><sub>0</sub> > 0 is a fixed constant.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 3\",\"pages\":\"728 - 743\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1091-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1091-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
where Ω ⊂ ℝN is a bounded domain, λ > 0 is a parameter. The function ψ(∣t∣)t is the subcritical term, and ϕ(∣t∣)t is the critical Orlicz-Sobolev growth term with respect to φ. Under appropriate conditions on φ, ψ and ϕ, we prove the existence of infinitely many weak solutions for quasi-linear elliptic equation, for λ ∈ (0, λ0), where λ0 > 0 is a fixed constant.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.