{"title":"具有所有 (a, b) 奇偶因子的图的度条件","authors":"Hao-dong Liu, Hong-liang Lu","doi":"10.1007/s10255-024-1090-y","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>a</i> and <i>b</i> be positive integers such that <i>a</i> ≤ <i>b</i> and <i>a</i> ≡ <i>b</i> (mod 2). We say that <i>G</i> has all (<i>a, b</i>)-parity factors if <i>G</i> has an <i>h</i>-factor for every function <i>h</i>: <i>V</i>(<i>G</i>) → {<i>a, a</i> + 2, ⋯, <i>b</i> − 2, <i>b</i>} with <i>b</i>∣<i>V</i>(<i>G</i>)∣ even and <i>h</i>(<i>v</i>) ≡ <i>b</i> (mod 2) for all <i>v</i> ∈ <i>V</i>(<i>G</i>). In this paper, we prove that every graph <i>G</i> with <i>n</i> ≥ 2(<i>b</i> + 1)(<i>a</i> + <i>b</i>) vertices has all (<i>a, b</i>)-parity factors if <i>δ</i>(<i>G</i>) ≥ (<i>b</i><sup>2</sup> − <i>b</i>)/<i>a</i>, and for any two nonadjacent vertices <span>\\(u,\\,v\\, \\in \\,V\\,(G),\\,\\max \\{{d_G}(u),\\,{d_G}(v)\\} \\, \\ge {{bn} \\over {a + b}}\\)</span>. Moreover, we show that this result is best possible in some sense.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"656 - 664"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Degree Condition for Graphs Having All (a, b)-parity Factors\",\"authors\":\"Hao-dong Liu, Hong-liang Lu\",\"doi\":\"10.1007/s10255-024-1090-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>a</i> and <i>b</i> be positive integers such that <i>a</i> ≤ <i>b</i> and <i>a</i> ≡ <i>b</i> (mod 2). We say that <i>G</i> has all (<i>a, b</i>)-parity factors if <i>G</i> has an <i>h</i>-factor for every function <i>h</i>: <i>V</i>(<i>G</i>) → {<i>a, a</i> + 2, ⋯, <i>b</i> − 2, <i>b</i>} with <i>b</i>∣<i>V</i>(<i>G</i>)∣ even and <i>h</i>(<i>v</i>) ≡ <i>b</i> (mod 2) for all <i>v</i> ∈ <i>V</i>(<i>G</i>). In this paper, we prove that every graph <i>G</i> with <i>n</i> ≥ 2(<i>b</i> + 1)(<i>a</i> + <i>b</i>) vertices has all (<i>a, b</i>)-parity factors if <i>δ</i>(<i>G</i>) ≥ (<i>b</i><sup>2</sup> − <i>b</i>)/<i>a</i>, and for any two nonadjacent vertices <span>\\\\(u,\\\\,v\\\\, \\\\in \\\\,V\\\\,(G),\\\\,\\\\max \\\\{{d_G}(u),\\\\,{d_G}(v)\\\\} \\\\, \\\\ge {{bn} \\\\over {a + b}}\\\\)</span>. Moreover, we show that this result is best possible in some sense.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 3\",\"pages\":\"656 - 664\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1090-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1090-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
设 a 和 b 为正整数,且 a≤b 和 a≡b (mod 2)。如果对于每个函数 h,G 都有一个 h 因子,那么我们就说 G 具有所有 (a, b) 奇偶因子:V(G)→{a,a + 2,⋯,b - 2,b},其中 b∣V(G)∣ 偶数,且对于所有 v∈V(G) ,h(v) ≡ b(mod 2)。在本文中,我们将证明,如果 δ(G) ≥ (b2 - b)/a, 并且对于任意两个非相邻顶点 \(u,\,v\, \in \,V\,(G),\,\max \{{d_G}(u),\,{d_G}(v)\} ,则具有 n≥ 2(b + 1)(a + b) 个顶点的每个图 G 都具有所有(a, b)奇偶因子。\ge {{bn}\over {a + b}})。此外,我们还证明了这一结果在某种意义上是最好的。
A Degree Condition for Graphs Having All (a, b)-parity Factors
Let a and b be positive integers such that a ≤ b and a ≡ b (mod 2). We say that G has all (a, b)-parity factors if G has an h-factor for every function h: V(G) → {a, a + 2, ⋯, b − 2, b} with b∣V(G)∣ even and h(v) ≡ b (mod 2) for all v ∈ V(G). In this paper, we prove that every graph G with n ≥ 2(b + 1)(a + b) vertices has all (a, b)-parity factors if δ(G) ≥ (b2 − b)/a, and for any two nonadjacent vertices \(u,\,v\, \in \,V\,(G),\,\max \{{d_G}(u),\,{d_G}(v)\} \, \ge {{bn} \over {a + b}}\). Moreover, we show that this result is best possible in some sense.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.