具有所有 (a, b) 奇偶因子的图的度条件

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Hao-dong Liu, Hong-liang Lu
{"title":"具有所有 (a, b) 奇偶因子的图的度条件","authors":"Hao-dong Liu,&nbsp;Hong-liang Lu","doi":"10.1007/s10255-024-1090-y","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>a</i> and <i>b</i> be positive integers such that <i>a</i> ≤ <i>b</i> and <i>a</i> ≡ <i>b</i> (mod 2). We say that <i>G</i> has all (<i>a, b</i>)-parity factors if <i>G</i> has an <i>h</i>-factor for every function <i>h</i>: <i>V</i>(<i>G</i>) → {<i>a, a</i> + 2, ⋯, <i>b</i> − 2, <i>b</i>} with <i>b</i>∣<i>V</i>(<i>G</i>)∣ even and <i>h</i>(<i>v</i>) ≡ <i>b</i> (mod 2) for all <i>v</i> ∈ <i>V</i>(<i>G</i>). In this paper, we prove that every graph <i>G</i> with <i>n</i> ≥ 2(<i>b</i> + 1)(<i>a</i> + <i>b</i>) vertices has all (<i>a, b</i>)-parity factors if <i>δ</i>(<i>G</i>) ≥ (<i>b</i><sup>2</sup> − <i>b</i>)/<i>a</i>, and for any two nonadjacent vertices <span>\\(u,\\,v\\, \\in \\,V\\,(G),\\,\\max \\{{d_G}(u),\\,{d_G}(v)\\} \\, \\ge {{bn} \\over {a + b}}\\)</span>. Moreover, we show that this result is best possible in some sense.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"656 - 664"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Degree Condition for Graphs Having All (a, b)-parity Factors\",\"authors\":\"Hao-dong Liu,&nbsp;Hong-liang Lu\",\"doi\":\"10.1007/s10255-024-1090-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>a</i> and <i>b</i> be positive integers such that <i>a</i> ≤ <i>b</i> and <i>a</i> ≡ <i>b</i> (mod 2). We say that <i>G</i> has all (<i>a, b</i>)-parity factors if <i>G</i> has an <i>h</i>-factor for every function <i>h</i>: <i>V</i>(<i>G</i>) → {<i>a, a</i> + 2, ⋯, <i>b</i> − 2, <i>b</i>} with <i>b</i>∣<i>V</i>(<i>G</i>)∣ even and <i>h</i>(<i>v</i>) ≡ <i>b</i> (mod 2) for all <i>v</i> ∈ <i>V</i>(<i>G</i>). In this paper, we prove that every graph <i>G</i> with <i>n</i> ≥ 2(<i>b</i> + 1)(<i>a</i> + <i>b</i>) vertices has all (<i>a, b</i>)-parity factors if <i>δ</i>(<i>G</i>) ≥ (<i>b</i><sup>2</sup> − <i>b</i>)/<i>a</i>, and for any two nonadjacent vertices <span>\\\\(u,\\\\,v\\\\, \\\\in \\\\,V\\\\,(G),\\\\,\\\\max \\\\{{d_G}(u),\\\\,{d_G}(v)\\\\} \\\\, \\\\ge {{bn} \\\\over {a + b}}\\\\)</span>. Moreover, we show that this result is best possible in some sense.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 3\",\"pages\":\"656 - 664\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1090-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1090-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设 a 和 b 为正整数,且 a≤b 和 a≡b (mod 2)。如果对于每个函数 h,G 都有一个 h 因子,那么我们就说 G 具有所有 (a, b) 奇偶因子:V(G)→{a,a + 2,⋯,b - 2,b},其中 b∣V(G)∣ 偶数,且对于所有 v∈V(G) ,h(v) ≡ b(mod 2)。在本文中,我们将证明,如果 δ(G) ≥ (b2 - b)/a, 并且对于任意两个非相邻顶点 \(u,\,v\, \in \,V\,(G),\,\max \{{d_G}(u),\,{d_G}(v)\} ,则具有 n≥ 2(b + 1)(a + b) 个顶点的每个图 G 都具有所有(a, b)奇偶因子。\ge {{bn}\over {a + b}})。此外,我们还证明了这一结果在某种意义上是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Degree Condition for Graphs Having All (a, b)-parity Factors

Let a and b be positive integers such that ab and ab (mod 2). We say that G has all (a, b)-parity factors if G has an h-factor for every function h: V(G) → {a, a + 2, ⋯, b − 2, b} with bV(G)∣ even and h(v) ≡ b (mod 2) for all vV(G). In this paper, we prove that every graph G with n ≥ 2(b + 1)(a + b) vertices has all (a, b)-parity factors if δ(G) ≥ (b2b)/a, and for any two nonadjacent vertices \(u,\,v\, \in \,V\,(G),\,\max \{{d_G}(u),\,{d_G}(v)\} \, \ge {{bn} \over {a + b}}\). Moreover, we show that this result is best possible in some sense.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信