{"title":"具有多项式换向器的六度均匀等时中心系统的全局相位特征","authors":"Li-na Guo, Ai-yong Chen, Shuai-feng Zhao","doi":"10.1007/s10255-024-1081-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator. Such systems have the form <span>\\(\\dot x = - y + xf(x,\\,y),\\,\\,\\dot y = x + yf(x,\\,y)\\)</span>, where <i>f</i>(<i>x, y</i>) = <i>a</i><sub>1</sub><i>x</i> + <i>a</i><sub>2</sub><i>xy</i> + <i>a</i><sub>3</sub><i>xy</i><sup>2</sup> + <i>a</i><sub>4</sub><i>xy</i><sup>3</sup> + <i>a</i><sub>5</sub><i>xy</i><sup>4</sup> = <i>xσ</i>(<i>y</i>), and any zero of 1 + <i>a</i><sub>1</sub><i>y</i> + <i>a</i><sub>2</sub><i>y</i><sup>2</sup> + <i>a</i><sub>3</sub><i>y</i><sup>3</sup> + <i>a</i><sub>4</sub><i>y</i><sup>4</sup> + <i>a</i><sub>5</sub><i>y</i><sup>5</sup>, <span>\\(y = \\bar y\\)</span> is an invariant straight line. At last, all global phase portraits are drawn on the Poincaré disk.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10255-024-1081-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Global Phase Portraits of Uniform Isochronous Centers System of Degree Six with Polynomial Commutator\",\"authors\":\"Li-na Guo, Ai-yong Chen, Shuai-feng Zhao\",\"doi\":\"10.1007/s10255-024-1081-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator. Such systems have the form <span>\\\\(\\\\dot x = - y + xf(x,\\\\,y),\\\\,\\\\,\\\\dot y = x + yf(x,\\\\,y)\\\\)</span>, where <i>f</i>(<i>x, y</i>) = <i>a</i><sub>1</sub><i>x</i> + <i>a</i><sub>2</sub><i>xy</i> + <i>a</i><sub>3</sub><i>xy</i><sup>2</sup> + <i>a</i><sub>4</sub><i>xy</i><sup>3</sup> + <i>a</i><sub>5</sub><i>xy</i><sup>4</sup> = <i>xσ</i>(<i>y</i>), and any zero of 1 + <i>a</i><sub>1</sub><i>y</i> + <i>a</i><sub>2</sub><i>y</i><sup>2</sup> + <i>a</i><sub>3</sub><i>y</i><sup>3</sup> + <i>a</i><sub>4</sub><i>y</i><sup>4</sup> + <i>a</i><sub>5</sub><i>y</i><sup>5</sup>, <span>\\\\(y = \\\\bar y\\\\)</span> is an invariant straight line. At last, all global phase portraits are drawn on the Poincaré disk.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10255-024-1081-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1081-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1081-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Phase Portraits of Uniform Isochronous Centers System of Degree Six with Polynomial Commutator
This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator. Such systems have the form \(\dot x = - y + xf(x,\,y),\,\,\dot y = x + yf(x,\,y)\), where f(x, y) = a1x + a2xy + a3xy2 + a4xy3 + a5xy4 = xσ(y), and any zero of 1 + a1y + a2y2 + a3y3 + a4y4 + a5y5, \(y = \bar y\) is an invariant straight line. At last, all global phase portraits are drawn on the Poincaré disk.