具有多项式换向器的六度均匀等时中心系统的全局相位特征

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Li-na Guo, Ai-yong Chen, Shuai-feng Zhao
{"title":"具有多项式换向器的六度均匀等时中心系统的全局相位特征","authors":"Li-na Guo,&nbsp;Ai-yong Chen,&nbsp;Shuai-feng Zhao","doi":"10.1007/s10255-024-1081-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator. Such systems have the form <span>\\(\\dot x = - y + xf(x,\\,y),\\,\\,\\dot y = x + yf(x,\\,y)\\)</span>, where <i>f</i>(<i>x, y</i>) = <i>a</i><sub>1</sub><i>x</i> + <i>a</i><sub>2</sub><i>xy</i> + <i>a</i><sub>3</sub><i>xy</i><sup>2</sup> + <i>a</i><sub>4</sub><i>xy</i><sup>3</sup> + <i>a</i><sub>5</sub><i>xy</i><sup>4</sup> = <i>xσ</i>(<i>y</i>), and any zero of 1 + <i>a</i><sub>1</sub><i>y</i> + <i>a</i><sub>2</sub><i>y</i><sup>2</sup> + <i>a</i><sub>3</sub><i>y</i><sup>3</sup> + <i>a</i><sub>4</sub><i>y</i><sup>4</sup> + <i>a</i><sub>5</sub><i>y</i><sup>5</sup>, <span>\\(y = \\bar y\\)</span> is an invariant straight line. At last, all global phase portraits are drawn on the Poincaré disk.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"577 - 599"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10255-024-1081-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Global Phase Portraits of Uniform Isochronous Centers System of Degree Six with Polynomial Commutator\",\"authors\":\"Li-na Guo,&nbsp;Ai-yong Chen,&nbsp;Shuai-feng Zhao\",\"doi\":\"10.1007/s10255-024-1081-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator. Such systems have the form <span>\\\\(\\\\dot x = - y + xf(x,\\\\,y),\\\\,\\\\,\\\\dot y = x + yf(x,\\\\,y)\\\\)</span>, where <i>f</i>(<i>x, y</i>) = <i>a</i><sub>1</sub><i>x</i> + <i>a</i><sub>2</sub><i>xy</i> + <i>a</i><sub>3</sub><i>xy</i><sup>2</sup> + <i>a</i><sub>4</sub><i>xy</i><sup>3</sup> + <i>a</i><sub>5</sub><i>xy</i><sup>4</sup> = <i>xσ</i>(<i>y</i>), and any zero of 1 + <i>a</i><sub>1</sub><i>y</i> + <i>a</i><sub>2</sub><i>y</i><sup>2</sup> + <i>a</i><sub>3</sub><i>y</i><sup>3</sup> + <i>a</i><sub>4</sub><i>y</i><sup>4</sup> + <i>a</i><sub>5</sub><i>y</i><sup>5</sup>, <span>\\\\(y = \\\\bar y\\\\)</span> is an invariant straight line. At last, all global phase portraits are drawn on the Poincaré disk.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 3\",\"pages\":\"577 - 599\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10255-024-1081-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1081-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1081-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有多项式换向器的六度均匀等时中心系统的全局相位肖像。此类系统的形式为(dot x = - y + xf(x,\,y),\,\dot y = x + yf(x,\,y)\), 其中f(x, y) = a1x + a2xy + a3xy2 + a4xy3 + a5xy4 = xσ(y)、和 1 + a1y + a2y2 + a3y3 + a4y4 + a5y5 的任意零点,(y = (bar y\ )是一条不变直线。最后,所有的全局相位肖像都画在波恩卡莱圆盘上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Phase Portraits of Uniform Isochronous Centers System of Degree Six with Polynomial Commutator

This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator. Such systems have the form \(\dot x = - y + xf(x,\,y),\,\,\dot y = x + yf(x,\,y)\), where f(x, y) = a1x + a2xy + a3xy2 + a4xy3 + a5xy4 = (y), and any zero of 1 + a1y + a2y2 + a3y3 + a4y4 + a5y5, \(y = \bar y\) is an invariant straight line. At last, all global phase portraits are drawn on the Poincaré disk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信