Nicole Robinson, Christopher Tsz-Hang Yeung, Akansel Cosgun
{"title":"我应该贴墙行驶吗?评估 \"贴墙行驶 \"的社会接受度和驾驶偏好","authors":"Nicole Robinson, Christopher Tsz-Hang Yeung, Akansel Cosgun","doi":"10.1007/s12369-024-01141-1","DOIUrl":null,"url":null,"abstract":"<p>The need for safe, predictable, and reliable robot navigation is fundamental for mobile robots to move around in home and office environments. Shortest-path navigation is a popular robot navigation method that uses the most efficient path to get to the desired goal. This behaviour is not always easy to interpret, understand, and avoid in a congested hallway. Instead, more predictable navigation methods, such as a robot following a wall, can help increase social acceptance and help avoid the robot crossing the pedestrian path. If a robot follows along a wall, a key variable to consider is the preferred driving side of the robot (left or right) in areas such as in narrow passages, and its perceived impact on social acceptance. This international user study (n = 143) involved an online video-based test to compare robot evaluation and social acceptance for two types of mobile navigation (Wall-Following and Shortest Path), including the preferred driving side for Wall-Following. A Fetch robot navigated from start to goal position in a series of indoor scenarios with a pedestrian. Select scenarios included a hallway, doorway, and intersection. Independent Sample T-Tests results found that Wall-Following was rated significantly higher than Shortest Path for being perceived as more comfortable and predictable, regardless of robot driving side. The preference for the driver side of the robot did not match the country of residence, nor did it have a significant impact on robot ratings. There were significant interaction effects for comfort, safety and predictable scores across two timepoints. Given the popularity of Shortest Path navigation, the findings indicate that this approach might not be the most appropriate for human settings. Additional investigation into Wall-Following behaviours is recommended for social acceptance, even if the method compromises the efficiency of the robot to acheive its objective.</p>","PeriodicalId":14361,"journal":{"name":"International Journal of Social Robotics","volume":"3 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Should I Just Stick to the Wall? Evaluating the Social Acceptance and Preferred Driving Side of Wall Following\",\"authors\":\"Nicole Robinson, Christopher Tsz-Hang Yeung, Akansel Cosgun\",\"doi\":\"10.1007/s12369-024-01141-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The need for safe, predictable, and reliable robot navigation is fundamental for mobile robots to move around in home and office environments. Shortest-path navigation is a popular robot navigation method that uses the most efficient path to get to the desired goal. This behaviour is not always easy to interpret, understand, and avoid in a congested hallway. Instead, more predictable navigation methods, such as a robot following a wall, can help increase social acceptance and help avoid the robot crossing the pedestrian path. If a robot follows along a wall, a key variable to consider is the preferred driving side of the robot (left or right) in areas such as in narrow passages, and its perceived impact on social acceptance. This international user study (n = 143) involved an online video-based test to compare robot evaluation and social acceptance for two types of mobile navigation (Wall-Following and Shortest Path), including the preferred driving side for Wall-Following. A Fetch robot navigated from start to goal position in a series of indoor scenarios with a pedestrian. Select scenarios included a hallway, doorway, and intersection. Independent Sample T-Tests results found that Wall-Following was rated significantly higher than Shortest Path for being perceived as more comfortable and predictable, regardless of robot driving side. The preference for the driver side of the robot did not match the country of residence, nor did it have a significant impact on robot ratings. There were significant interaction effects for comfort, safety and predictable scores across two timepoints. Given the popularity of Shortest Path navigation, the findings indicate that this approach might not be the most appropriate for human settings. Additional investigation into Wall-Following behaviours is recommended for social acceptance, even if the method compromises the efficiency of the robot to acheive its objective.</p>\",\"PeriodicalId\":14361,\"journal\":{\"name\":\"International Journal of Social Robotics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Social Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12369-024-01141-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12369-024-01141-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Should I Just Stick to the Wall? Evaluating the Social Acceptance and Preferred Driving Side of Wall Following
The need for safe, predictable, and reliable robot navigation is fundamental for mobile robots to move around in home and office environments. Shortest-path navigation is a popular robot navigation method that uses the most efficient path to get to the desired goal. This behaviour is not always easy to interpret, understand, and avoid in a congested hallway. Instead, more predictable navigation methods, such as a robot following a wall, can help increase social acceptance and help avoid the robot crossing the pedestrian path. If a robot follows along a wall, a key variable to consider is the preferred driving side of the robot (left or right) in areas such as in narrow passages, and its perceived impact on social acceptance. This international user study (n = 143) involved an online video-based test to compare robot evaluation and social acceptance for two types of mobile navigation (Wall-Following and Shortest Path), including the preferred driving side for Wall-Following. A Fetch robot navigated from start to goal position in a series of indoor scenarios with a pedestrian. Select scenarios included a hallway, doorway, and intersection. Independent Sample T-Tests results found that Wall-Following was rated significantly higher than Shortest Path for being perceived as more comfortable and predictable, regardless of robot driving side. The preference for the driver side of the robot did not match the country of residence, nor did it have a significant impact on robot ratings. There were significant interaction effects for comfort, safety and predictable scores across two timepoints. Given the popularity of Shortest Path navigation, the findings indicate that this approach might not be the most appropriate for human settings. Additional investigation into Wall-Following behaviours is recommended for social acceptance, even if the method compromises the efficiency of the robot to acheive its objective.
期刊介绍:
Social Robotics is the study of robots that are able to interact and communicate among themselves, with humans, and with the environment, within the social and cultural structure attached to its role. The journal covers a broad spectrum of topics related to the latest technologies, new research results and developments in the area of social robotics on all levels, from developments in core enabling technologies to system integration, aesthetic design, applications and social implications. It provides a platform for like-minded researchers to present their findings and latest developments in social robotics, covering relevant advances in engineering, computing, arts and social sciences.
The journal publishes original, peer reviewed articles and contributions on innovative ideas and concepts, new discoveries and improvements, as well as novel applications, by leading researchers and developers regarding the latest fundamental advances in the core technologies that form the backbone of social robotics, distinguished developmental projects in the area, as well as seminal works in aesthetic design, ethics and philosophy, studies on social impact and influence, pertaining to social robotics.