离子液体基混合胺双相溶剂在沼气提纯过程中捕获二氧化碳的工艺优化和机理研究

IF 6.1 2区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Fanzhi Meng, Siyu Han, Li Lin, Jinglin Li, Kailun Chen, Jianguo Jiang
{"title":"离子液体基混合胺双相溶剂在沼气提纯过程中捕获二氧化碳的工艺优化和机理研究","authors":"Fanzhi Meng, Siyu Han, Li Lin, Jinglin Li, Kailun Chen, Jianguo Jiang","doi":"10.1007/s11783-024-1855-9","DOIUrl":null,"url":null,"abstract":"<p>This study focused on enhancing the efficiency of methane upgrading and reducing energy consumption in the biogas upgrading process through the use of biphasic solvents. An aqueous-based biphasic solvent, comprising methyl monoethanolamine (MMEA), N-methyldiethanolamine (MDEA), and 1-butyl-3-methylimidazolium tetrafluoroborate (ItFB), was meticulously prepared. The biogas upgrading effect, regeneration efficiency, regeneration energy consumption, economic viability, selectivity, and phase separation characteristics of this absorbent were systematically analyzed. Various parameters, including different inlet flow rates, stirring rate, methane inlet concentrations, reaction temperatures, and amine mixing ratios, were adjusted to investigate their impact. A comprehensive evaluation was conducted on the biogas upgrading effect and substance migration trends of the biphasic solvent. Optimal process parameters were determined, demonstrating the favorable impact of the biphasic solvent on biogas upgrading. The upgraded gas achieved a methane purity exceeding 96%, and the regeneration energy consumption decreased by 44.27% compared to 30 wt.% MEA, resulting in a more than 50% improvement in economic efficiency. The interaction between the ionic liquid and carbamate facilitated the phase separation process, with carbon enrichment after separation exceeding 95%. This enhancement significantly contributed to the improvement of regeneration energy consumption. The study thus concludes that biphasic solvents, exemplified by the described aqueous-based solution, offer a promising avenue for effective biogas upgrading with notable advancements in economic and energy efficiency.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process optimization and mechanism study of ionic liquid-based mixed amine biphasic solvents for CO2 capture in biogas upgrading procedure\",\"authors\":\"Fanzhi Meng, Siyu Han, Li Lin, Jinglin Li, Kailun Chen, Jianguo Jiang\",\"doi\":\"10.1007/s11783-024-1855-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focused on enhancing the efficiency of methane upgrading and reducing energy consumption in the biogas upgrading process through the use of biphasic solvents. An aqueous-based biphasic solvent, comprising methyl monoethanolamine (MMEA), N-methyldiethanolamine (MDEA), and 1-butyl-3-methylimidazolium tetrafluoroborate (ItFB), was meticulously prepared. The biogas upgrading effect, regeneration efficiency, regeneration energy consumption, economic viability, selectivity, and phase separation characteristics of this absorbent were systematically analyzed. Various parameters, including different inlet flow rates, stirring rate, methane inlet concentrations, reaction temperatures, and amine mixing ratios, were adjusted to investigate their impact. A comprehensive evaluation was conducted on the biogas upgrading effect and substance migration trends of the biphasic solvent. Optimal process parameters were determined, demonstrating the favorable impact of the biphasic solvent on biogas upgrading. The upgraded gas achieved a methane purity exceeding 96%, and the regeneration energy consumption decreased by 44.27% compared to 30 wt.% MEA, resulting in a more than 50% improvement in economic efficiency. The interaction between the ionic liquid and carbamate facilitated the phase separation process, with carbon enrichment after separation exceeding 95%. This enhancement significantly contributed to the improvement of regeneration energy consumption. The study thus concludes that biphasic solvents, exemplified by the described aqueous-based solution, offer a promising avenue for effective biogas upgrading with notable advancements in economic and energy efficiency.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1855-9\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1855-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是通过使用双相溶剂提高沼气提纯过程中的甲烷提纯效率并降低能耗。该研究精心制备了一种水基双相溶剂,包括甲基一乙醇胺(MMEA)、N-甲基二乙醇胺(MDEA)和 1-丁基-3-甲基咪唑四氟硼酸盐(ItFB)。系统分析了该吸收剂的沼气升级效果、再生效率、再生能耗、经济可行性、选择性和相分离特性。调整了各种参数,包括不同的入口流速、搅拌速率、甲烷入口浓度、反应温度和胺混合比,以研究它们的影响。对双相溶剂的沼气升级效果和物质迁移趋势进行了综合评估。确定了最佳工艺参数,证明了双相溶剂对沼气提纯的有利影响。升级后的气体甲烷纯度超过 96%,再生能耗比 30 wt.% MEA 降低了 44.27%,经济效益提高了 50%以上。离子液体与氨基甲酸酯之间的相互作用促进了相分离过程,分离后碳富集度超过 95%。这种提高极大地促进了再生能耗的改善。因此,该研究得出结论,以所述水基溶液为例的双相溶剂为有效的沼气升级提供了一条大有可为的途径,并在经济和能源效率方面取得了显著进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Process optimization and mechanism study of ionic liquid-based mixed amine biphasic solvents for CO2 capture in biogas upgrading procedure

Process optimization and mechanism study of ionic liquid-based mixed amine biphasic solvents for CO2 capture in biogas upgrading procedure

This study focused on enhancing the efficiency of methane upgrading and reducing energy consumption in the biogas upgrading process through the use of biphasic solvents. An aqueous-based biphasic solvent, comprising methyl monoethanolamine (MMEA), N-methyldiethanolamine (MDEA), and 1-butyl-3-methylimidazolium tetrafluoroborate (ItFB), was meticulously prepared. The biogas upgrading effect, regeneration efficiency, regeneration energy consumption, economic viability, selectivity, and phase separation characteristics of this absorbent were systematically analyzed. Various parameters, including different inlet flow rates, stirring rate, methane inlet concentrations, reaction temperatures, and amine mixing ratios, were adjusted to investigate their impact. A comprehensive evaluation was conducted on the biogas upgrading effect and substance migration trends of the biphasic solvent. Optimal process parameters were determined, demonstrating the favorable impact of the biphasic solvent on biogas upgrading. The upgraded gas achieved a methane purity exceeding 96%, and the regeneration energy consumption decreased by 44.27% compared to 30 wt.% MEA, resulting in a more than 50% improvement in economic efficiency. The interaction between the ionic liquid and carbamate facilitated the phase separation process, with carbon enrichment after separation exceeding 95%. This enhancement significantly contributed to the improvement of regeneration energy consumption. The study thus concludes that biphasic solvents, exemplified by the described aqueous-based solution, offer a promising avenue for effective biogas upgrading with notable advancements in economic and energy efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Environmental Science & Engineering
Frontiers of Environmental Science & Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
10.90
自引率
12.50%
发文量
988
审稿时长
6.1 months
期刊介绍: Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines. FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信