针对不可压缩流问题的发散顺应性 HDG 方案的 hp-Multigrid 预处理器

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Guosheng Fu, Wenzheng Kuang
{"title":"针对不可压缩流问题的发散顺应性 HDG 方案的 hp-Multigrid 预处理器","authors":"Guosheng Fu, Wenzheng Kuang","doi":"10.1007/s10915-024-02568-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, we present an <i>hp</i>-multigrid preconditioner for a divergence-conforming HDG scheme for the generalized Stokes and the Navier–Stokes equations using an augmented Lagrangian formulation. Our method relies on conforming simplicial meshes in two- and three-dimensions. The <i>hp</i>-multigrid algorithm is a multiplicative auxiliary space preconditioner that employs the lowest-order space as the auxiliary space, and we develop a geometric multigrid method as the auxiliary space solver. For the generalized Stokes problem, the crucial ingredient of the geometric multigrid method is the equivalence between the condensed lowest-order divergence-conforming HDG scheme and a Crouzeix–Raviart discretization with a pressure-robust treatment as introduced in Linke and Merdon (Comput Methods Appl Mech Engrg 311:304–326, 2022), which allows for the direct application of geometric multigrid theory on the Crouzeix–Raviart discretization. The numerical experiments demonstrate the robustness of the proposed <i>hp</i>-multigrid preconditioner with respect to mesh size and augmented Lagrangian parameter, with iteration counts insensitivity to polynomial order increase. Inspired by the works by Benzi and Olshanskii (SIAM J Sci Comput 28:2095–2113, 2006) and Farrell et al. (SIAM J Sci Comput 41:A3073–A3096, 2019), we further test the proposed preconditioner on the divergence-conforming HDG scheme for the Navier–Stokes equations. Numerical experiments show a mild increase in the iteration counts of the preconditioned GMRes solver with the rise in Reynolds number up to <span>\\(10^3\\)</span>.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"3 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"hp-Multigrid Preconditioner for a Divergence-Conforming HDG Scheme for the Incompressible Flow Problems\",\"authors\":\"Guosheng Fu, Wenzheng Kuang\",\"doi\":\"10.1007/s10915-024-02568-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we present an <i>hp</i>-multigrid preconditioner for a divergence-conforming HDG scheme for the generalized Stokes and the Navier–Stokes equations using an augmented Lagrangian formulation. Our method relies on conforming simplicial meshes in two- and three-dimensions. The <i>hp</i>-multigrid algorithm is a multiplicative auxiliary space preconditioner that employs the lowest-order space as the auxiliary space, and we develop a geometric multigrid method as the auxiliary space solver. For the generalized Stokes problem, the crucial ingredient of the geometric multigrid method is the equivalence between the condensed lowest-order divergence-conforming HDG scheme and a Crouzeix–Raviart discretization with a pressure-robust treatment as introduced in Linke and Merdon (Comput Methods Appl Mech Engrg 311:304–326, 2022), which allows for the direct application of geometric multigrid theory on the Crouzeix–Raviart discretization. The numerical experiments demonstrate the robustness of the proposed <i>hp</i>-multigrid preconditioner with respect to mesh size and augmented Lagrangian parameter, with iteration counts insensitivity to polynomial order increase. Inspired by the works by Benzi and Olshanskii (SIAM J Sci Comput 28:2095–2113, 2006) and Farrell et al. (SIAM J Sci Comput 41:A3073–A3096, 2019), we further test the proposed preconditioner on the divergence-conforming HDG scheme for the Navier–Stokes equations. Numerical experiments show a mild increase in the iteration counts of the preconditioned GMRes solver with the rise in Reynolds number up to <span>\\\\(10^3\\\\)</span>.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02568-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02568-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们针对广义斯托克斯方程和纳维-斯托克斯方程,采用增强拉格朗日公式,提出了发散顺应的 HDG 方案的 hp 多网格预处理方法。我们的方法依赖于二维和三维的符合简网格。hp 多网格算法是一种采用最低阶空间作为辅助空间的乘法辅助空间预处理器,我们开发了一种几何多网格方法作为辅助空间求解器。对于广义斯托克斯问题,几何多网格方法的关键要素是凝聚最低阶发散顺应的 HDG 方案与 Crouzeix-Raviart 离散化之间的等价性,Crouzeix-Raviart 离散化采用了 Linke 和 Merdon(Comput Methods Appl Mech Engrg 311:304-326,2022 年)中介绍的保压处理,这使得几何多网格理论可以直接应用于 Crouzeix-Raviart 离散化。数值实验证明了所提出的 hp 多网格预处理在网格尺寸和增强拉格朗日参数方面的鲁棒性,迭代次数对多项式阶数的增加不敏感。受 Benzi 和 Olshanskii(SIAM J Sci Comput 28:2095-2113, 2006)以及 Farrell 等人(SIAM J Sci Comput 41:A3073-A3096, 2019)的研究启发,我们进一步测试了针对 Navier-Stokes 方程的发散顺应 HDG 方案的预处理器。数值实验表明,随着雷诺数的增加,预处理 GMRes 求解器的迭代次数会轻微增加,最高可达 (10^3\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

hp-Multigrid Preconditioner for a Divergence-Conforming HDG Scheme for the Incompressible Flow Problems

hp-Multigrid Preconditioner for a Divergence-Conforming HDG Scheme for the Incompressible Flow Problems

In this study, we present an hp-multigrid preconditioner for a divergence-conforming HDG scheme for the generalized Stokes and the Navier–Stokes equations using an augmented Lagrangian formulation. Our method relies on conforming simplicial meshes in two- and three-dimensions. The hp-multigrid algorithm is a multiplicative auxiliary space preconditioner that employs the lowest-order space as the auxiliary space, and we develop a geometric multigrid method as the auxiliary space solver. For the generalized Stokes problem, the crucial ingredient of the geometric multigrid method is the equivalence between the condensed lowest-order divergence-conforming HDG scheme and a Crouzeix–Raviart discretization with a pressure-robust treatment as introduced in Linke and Merdon (Comput Methods Appl Mech Engrg 311:304–326, 2022), which allows for the direct application of geometric multigrid theory on the Crouzeix–Raviart discretization. The numerical experiments demonstrate the robustness of the proposed hp-multigrid preconditioner with respect to mesh size and augmented Lagrangian parameter, with iteration counts insensitivity to polynomial order increase. Inspired by the works by Benzi and Olshanskii (SIAM J Sci Comput 28:2095–2113, 2006) and Farrell et al. (SIAM J Sci Comput 41:A3073–A3096, 2019), we further test the proposed preconditioner on the divergence-conforming HDG scheme for the Navier–Stokes equations. Numerical experiments show a mild increase in the iteration counts of the preconditioned GMRes solver with the rise in Reynolds number up to \(10^3\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信