计算双四元赫米矩阵主特征值的幂方法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Chunfeng Cui, Liqun Qi
{"title":"计算双四元赫米矩阵主特征值的幂方法","authors":"Chunfeng Cui, Liqun Qi","doi":"10.1007/s10915-024-02561-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first study the projections onto the set of unit dual quaternions, and the set of dual quaternion vectors with unit norms. Then we propose a power method for computing the dominant eigenvalue of a dual quaternion Hermitian matrix. For a strict dominant eigenvalue, we show the sequence generated by the power method converges to the dominant eigenvalue and its corresponding eigenvector linearly. For a general dominant eigenvalue, we establish linear convergence of the standard part of the dominant eigenvalue. Based upon these, we reformulate the simultaneous localization and mapping problem as a rank-one dual quaternion completion problem. A two-block coordinate descent method is proposed to solve this problem. One block has a closed-form solution and the other block is the best rank-one approximation problem of a dual quaternion Hermitian matrix, which can be computed by the power method. Numerical experiments are presented to show the efficiency of our proposed power method.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"49 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Power Method for Computing the Dominant Eigenvalue of a Dual Quaternion Hermitian Matrix\",\"authors\":\"Chunfeng Cui, Liqun Qi\",\"doi\":\"10.1007/s10915-024-02561-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we first study the projections onto the set of unit dual quaternions, and the set of dual quaternion vectors with unit norms. Then we propose a power method for computing the dominant eigenvalue of a dual quaternion Hermitian matrix. For a strict dominant eigenvalue, we show the sequence generated by the power method converges to the dominant eigenvalue and its corresponding eigenvector linearly. For a general dominant eigenvalue, we establish linear convergence of the standard part of the dominant eigenvalue. Based upon these, we reformulate the simultaneous localization and mapping problem as a rank-one dual quaternion completion problem. A two-block coordinate descent method is proposed to solve this problem. One block has a closed-form solution and the other block is the best rank-one approximation problem of a dual quaternion Hermitian matrix, which can be computed by the power method. Numerical experiments are presented to show the efficiency of our proposed power method.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02561-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02561-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先研究了对单位对偶四元数集的投影,以及具有单位规范的对偶四元数向量集。然后,我们提出了一种计算对偶四元赫米矩阵主导特征值的幂方法。对于严格的主导特征值,我们证明了幂方法产生的序列线性收敛于主导特征值及其相应的特征向量。对于一般主导特征值,我们确定了主导特征值标准部分的线性收敛。在此基础上,我们将同步定位和映射问题重新表述为一个秩一对偶四元数完成问题。我们提出了一种两块坐标下降法来解决这个问题。其中一块有闭式解,另一块是二元四元赫米矩阵的最佳秩一逼近问题,可通过幂方法计算。数值实验显示了我们提出的幂方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Power Method for Computing the Dominant Eigenvalue of a Dual Quaternion Hermitian Matrix

A Power Method for Computing the Dominant Eigenvalue of a Dual Quaternion Hermitian Matrix

In this paper, we first study the projections onto the set of unit dual quaternions, and the set of dual quaternion vectors with unit norms. Then we propose a power method for computing the dominant eigenvalue of a dual quaternion Hermitian matrix. For a strict dominant eigenvalue, we show the sequence generated by the power method converges to the dominant eigenvalue and its corresponding eigenvector linearly. For a general dominant eigenvalue, we establish linear convergence of the standard part of the dominant eigenvalue. Based upon these, we reformulate the simultaneous localization and mapping problem as a rank-one dual quaternion completion problem. A two-block coordinate descent method is proposed to solve this problem. One block has a closed-form solution and the other block is the best rank-one approximation problem of a dual quaternion Hermitian matrix, which can be computed by the power method. Numerical experiments are presented to show the efficiency of our proposed power method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信