非局部抛物线障碍问题中带有惩罚的有限元法隐含方案的精度

IF 0.5 Q3 MATHEMATICS
O. V. Glazyrina, R. Z. Dautov, D. A. Gubaidullina
{"title":"非局部抛物线障碍问题中带有惩罚的有限元法隐含方案的精度","authors":"O. V. Glazyrina, R. Z. Dautov, D. A. Gubaidullina","doi":"10.3103/s1066369x24700075","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In order to solve a parabolic variational inequality with a nonlocal spatial operator and a one-sided constraint on the solution, a numerical method based on the penalty method, finite elements, and the implicit Euler scheme is proposed and studied. Optimal estimates for the accuracy of the approximate solution in the energy norm are obtained.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"19 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy of an Implicit Scheme for the Finite Element Method with a Penalty for a Nonlocal Parabolic Obstacle Problem\",\"authors\":\"O. V. Glazyrina, R. Z. Dautov, D. A. Gubaidullina\",\"doi\":\"10.3103/s1066369x24700075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In order to solve a parabolic variational inequality with a nonlocal spatial operator and a one-sided constraint on the solution, a numerical method based on the penalty method, finite elements, and the implicit Euler scheme is proposed and studied. Optimal estimates for the accuracy of the approximate solution in the energy norm are obtained.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 为了求解一个抛物线变分不等式,该不等式具有非局部空间算子和对解的单边约束,提出并研究了一种基于惩罚法、有限元和隐式欧拉方案的数值方法。获得了能量规范下近似解精度的最佳估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy of an Implicit Scheme for the Finite Element Method with a Penalty for a Nonlocal Parabolic Obstacle Problem

Abstract

In order to solve a parabolic variational inequality with a nonlocal spatial operator and a one-sided constraint on the solution, a numerical method based on the penalty method, finite elements, and the implicit Euler scheme is proposed and studied. Optimal estimates for the accuracy of the approximate solution in the energy norm are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信