论一个 2 × 2 算子矩阵的基本频谱成分数

IF 0.5 Q3 MATHEMATICS
M. I. Muminov, I. N. Bozorov, T. Kh. Rasulov
{"title":"论一个 2 × 2 算子矩阵的基本频谱成分数","authors":"M. I. Muminov, I. N. Bozorov, T. Kh. Rasulov","doi":"10.3103/s1066369x24700129","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, a <span>\\(2 \\times 2\\)</span> block operator matrix <span>\\(H\\)</span> is considered as a bounded and self-adjoint operator in a Hilbert space. The location of the essential spectrum <span>\\({{\\sigma }_{{{\\text{ess}}}}}(H)\\)</span> of operator matrix <span>\\(H\\)</span> is described via the spectrum of the generalized Friedrichs model, i.e., the two- and three-particle branches of the essential spectrum <span>\\({{\\sigma }_{{{\\text{ess}}}}}(H)\\)</span> are singled out. We prove that the essential spectrum <span>\\({{\\sigma }_{{{\\text{ess}}}}}(H)\\)</span> consists of no more than six segments (components).</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"43 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Number of Components of the Essential Spectrum of One 2 × 2 Operator Matrix\",\"authors\":\"M. I. Muminov, I. N. Bozorov, T. Kh. Rasulov\",\"doi\":\"10.3103/s1066369x24700129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, a <span>\\\\(2 \\\\times 2\\\\)</span> block operator matrix <span>\\\\(H\\\\)</span> is considered as a bounded and self-adjoint operator in a Hilbert space. The location of the essential spectrum <span>\\\\({{\\\\sigma }_{{{\\\\text{ess}}}}}(H)\\\\)</span> of operator matrix <span>\\\\(H\\\\)</span> is described via the spectrum of the generalized Friedrichs model, i.e., the two- and three-particle branches of the essential spectrum <span>\\\\({{\\\\sigma }_{{{\\\\text{ess}}}}}(H)\\\\)</span> are singled out. We prove that the essential spectrum <span>\\\\({{\\\\sigma }_{{{\\\\text{ess}}}}}(H)\\\\)</span> consists of no more than six segments (components).</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract In this paper, a \(2 \times 2\) block operator matrix \(H\) is considered as a bounded and self-adjoint operator in a Hilbert space.通过广义弗里德里希模型的谱来描述算子矩阵 \({{\sigma }_{{{text{ess}}}}}(H)\) 的本质谱位置,即挑出本质谱 \({{\sigma }_{{{text{ess}}}}}(H)\) 的两粒子和三粒子分支。我们证明本质谱({{\sigma }_{{text{ess}}}}}(H)\)由不超过六个段(成分)组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Number of Components of the Essential Spectrum of One 2 × 2 Operator Matrix

Abstract

In this paper, a \(2 \times 2\) block operator matrix \(H\) is considered as a bounded and self-adjoint operator in a Hilbert space. The location of the essential spectrum \({{\sigma }_{{{\text{ess}}}}}(H)\) of operator matrix \(H\) is described via the spectrum of the generalized Friedrichs model, i.e., the two- and three-particle branches of the essential spectrum \({{\sigma }_{{{\text{ess}}}}}(H)\) are singled out. We prove that the essential spectrum \({{\sigma }_{{{\text{ess}}}}}(H)\) consists of no more than six segments (components).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信