{"title":"提高经碱液处理的竹子、椰子纤维和椰枣纤维复合材料在太阳能蒸馏应用中的热性能","authors":"P. Yadav, O. Prakash","doi":"10.1007/s11182-024-03191-4","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the thermal conductivity and moisture absorption characteristics of bamboo, coir, and date palm fiber composites, specifically examining their suitability for use in solar distillation applications. Four composite samples comprising alkali-treated bamboo and coir fiber (sample 1), untreated bamboo and coir fiber (sample 2), treated coir and date palm fiber (sample 3), and untreated coir and date palm fiber (sample 4) have been experimentally analyzed. Samples 1 and 3 showed 17.6 and 16.6% lower thermal conductivities and 45.8 and 44.2% lower moisture absorptions than untreated samples 2 and 4. Alkali-treated fibers had decreased lignin and hemicellulose and more cellulose, supporting the observed benefits after chemical analysis. Post-alkali scanning electron microscopy showed improved fiber surface morphology, highlighting cellulose energy-saving significance. The results indicate that these composites, due to their improved thermal insulation characteristics, provide a sustainable choice for integration into solar distillation systems.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 6","pages":"870 - 877"},"PeriodicalIF":0.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Thermal Performance of Alkali-Treated Bamboo, Coir, and Date Palm Fiber Composites for Solar Distillation Applications\",\"authors\":\"P. Yadav, O. Prakash\",\"doi\":\"10.1007/s11182-024-03191-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the thermal conductivity and moisture absorption characteristics of bamboo, coir, and date palm fiber composites, specifically examining their suitability for use in solar distillation applications. Four composite samples comprising alkali-treated bamboo and coir fiber (sample 1), untreated bamboo and coir fiber (sample 2), treated coir and date palm fiber (sample 3), and untreated coir and date palm fiber (sample 4) have been experimentally analyzed. Samples 1 and 3 showed 17.6 and 16.6% lower thermal conductivities and 45.8 and 44.2% lower moisture absorptions than untreated samples 2 and 4. Alkali-treated fibers had decreased lignin and hemicellulose and more cellulose, supporting the observed benefits after chemical analysis. Post-alkali scanning electron microscopy showed improved fiber surface morphology, highlighting cellulose energy-saving significance. The results indicate that these composites, due to their improved thermal insulation characteristics, provide a sustainable choice for integration into solar distillation systems.</p>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"67 6\",\"pages\":\"870 - 877\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-024-03191-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03191-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Thermal Performance of Alkali-Treated Bamboo, Coir, and Date Palm Fiber Composites for Solar Distillation Applications
This study investigates the thermal conductivity and moisture absorption characteristics of bamboo, coir, and date palm fiber composites, specifically examining their suitability for use in solar distillation applications. Four composite samples comprising alkali-treated bamboo and coir fiber (sample 1), untreated bamboo and coir fiber (sample 2), treated coir and date palm fiber (sample 3), and untreated coir and date palm fiber (sample 4) have been experimentally analyzed. Samples 1 and 3 showed 17.6 and 16.6% lower thermal conductivities and 45.8 and 44.2% lower moisture absorptions than untreated samples 2 and 4. Alkali-treated fibers had decreased lignin and hemicellulose and more cellulose, supporting the observed benefits after chemical analysis. Post-alkali scanning electron microscopy showed improved fiber surface morphology, highlighting cellulose energy-saving significance. The results indicate that these composites, due to their improved thermal insulation characteristics, provide a sustainable choice for integration into solar distillation systems.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.