影响语言特征扩散和人类散布的有限范围相互作用语言动力学模型

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Clément Zankoc, Els Heinsalu, Marco Patriarca
{"title":"影响语言特征扩散和人类散布的有限范围相互作用语言动力学模型","authors":"Clément Zankoc,&nbsp;Els Heinsalu,&nbsp;Marco Patriarca","doi":"10.1140/epjb/s10051-024-00706-3","DOIUrl":null,"url":null,"abstract":"<p>We study a multi-agent model of language dynamics that incorporates diffusion of linguistic traits and human dispersal, both influenced by local linguistic environment. We assume that each individual is characterized by a string, representing a language in terms of a set of linguistic features. Each individual can interact only with other individuals located within a finite neighborhood. The interaction between two individuals results in copying or passing a linguistic trait; the direction of the learning process is determined by the level of linguistic similarity with the neighborhood, estimated through the average Levenshtein distance. The latter determines also the diffusion coefficient of the random walk performed by the individuals. The dynamics of the model is investigated through numerical simulations over a wide range of parameters. Our results show a rich variety of possible final scenarios, ranging from language segregation and dialects formation to linguistic continua and consensus. The obtained language size distribution, spatial distribution of languages, and the correlation between geographic and linguistic distance at equilibrium resemble well the results observed in real systems.</p><p>The model dynamics incorporates diffusion of linguistic traits and human dispersal, both influenced by the local linguistic environment, in the spirit of the Axelrod and Shelling model, respectively. The system can reach different final scenarios ranging from consensus to fragmentation, like the equilibrium configuration shown that shows self-organized clusters: different symbols correspond to different languages (strings in the dendrogram) and each color represents a different dialect defined by the group emerging from the clustering analysis</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Language dynamics model with finite-range interactions influencing the diffusion of linguistic traits and human dispersal\",\"authors\":\"Clément Zankoc,&nbsp;Els Heinsalu,&nbsp;Marco Patriarca\",\"doi\":\"10.1140/epjb/s10051-024-00706-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a multi-agent model of language dynamics that incorporates diffusion of linguistic traits and human dispersal, both influenced by local linguistic environment. We assume that each individual is characterized by a string, representing a language in terms of a set of linguistic features. Each individual can interact only with other individuals located within a finite neighborhood. The interaction between two individuals results in copying or passing a linguistic trait; the direction of the learning process is determined by the level of linguistic similarity with the neighborhood, estimated through the average Levenshtein distance. The latter determines also the diffusion coefficient of the random walk performed by the individuals. The dynamics of the model is investigated through numerical simulations over a wide range of parameters. Our results show a rich variety of possible final scenarios, ranging from language segregation and dialects formation to linguistic continua and consensus. The obtained language size distribution, spatial distribution of languages, and the correlation between geographic and linguistic distance at equilibrium resemble well the results observed in real systems.</p><p>The model dynamics incorporates diffusion of linguistic traits and human dispersal, both influenced by the local linguistic environment, in the spirit of the Axelrod and Shelling model, respectively. The system can reach different final scenarios ranging from consensus to fragmentation, like the equilibrium configuration shown that shows self-organized clusters: different symbols correspond to different languages (strings in the dendrogram) and each color represents a different dialect defined by the group emerging from the clustering analysis</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00706-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00706-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究的语言动态多代理模型包含语言特征的扩散和人类的分散,两者都受到当地语言环境的影响。我们假设每个个体都有一个字符串,用一组语言特点代表一种语言。每个个体只能与位于有限邻域内的其他个体互动。两个个体之间的互动会导致语言特征的复制或传递;学习过程的方向由与邻域的语言相似程度决定,而语言相似程度是通过平均莱文斯坦距离估算的。后者还决定了个体随机行走的扩散系数。我们通过数值模拟研究了该模型在各种参数下的动态变化。我们的结果表明,最终可能出现的情况多种多样,从语言隔离和方言形成到语言连续性和共识。所获得的语言规模分布、语言空间分布以及平衡状态下地理距离和语言距离之间的相关性与在真实系统中观察到的结果非常相似。该系统可以达到从共识到分裂的不同最终情景,如图所示的平衡配置,它显示了自组织的聚类:不同的符号对应不同的语言(树枝图中的字符串),每种颜色代表聚类分析中出现的群体所定义的不同方言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Language dynamics model with finite-range interactions influencing the diffusion of linguistic traits and human dispersal

Language dynamics model with finite-range interactions influencing the diffusion of linguistic traits and human dispersal

Language dynamics model with finite-range interactions influencing the diffusion of linguistic traits and human dispersal

We study a multi-agent model of language dynamics that incorporates diffusion of linguistic traits and human dispersal, both influenced by local linguistic environment. We assume that each individual is characterized by a string, representing a language in terms of a set of linguistic features. Each individual can interact only with other individuals located within a finite neighborhood. The interaction between two individuals results in copying or passing a linguistic trait; the direction of the learning process is determined by the level of linguistic similarity with the neighborhood, estimated through the average Levenshtein distance. The latter determines also the diffusion coefficient of the random walk performed by the individuals. The dynamics of the model is investigated through numerical simulations over a wide range of parameters. Our results show a rich variety of possible final scenarios, ranging from language segregation and dialects formation to linguistic continua and consensus. The obtained language size distribution, spatial distribution of languages, and the correlation between geographic and linguistic distance at equilibrium resemble well the results observed in real systems.

The model dynamics incorporates diffusion of linguistic traits and human dispersal, both influenced by the local linguistic environment, in the spirit of the Axelrod and Shelling model, respectively. The system can reach different final scenarios ranging from consensus to fragmentation, like the equilibrium configuration shown that shows self-organized clusters: different symbols correspond to different languages (strings in the dendrogram) and each color represents a different dialect defined by the group emerging from the clustering analysis

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信