Paul Rebischung, Zuheir Altamimi, Laurent Métivier, Xavier Collilieux, Kevin Gobron, Kristel Chanard
{"title":"分析国际地质科学协会对 ITRF2020 的贡献","authors":"Paul Rebischung, Zuheir Altamimi, Laurent Métivier, Xavier Collilieux, Kevin Gobron, Kristel Chanard","doi":"10.1007/s00190-024-01870-1","DOIUrl":null,"url":null,"abstract":"<p>As its contribution to the latest release of the International Terrestrial Reference Frame, ITRF2020, the International GNSS Service (IGS) provided a 27-year-long series of daily “repro3” terrestrial frame solutions obtained by combining reprocessed solutions from ten Analysis Centers. This contribution represents an improvement over the previous contribution to ITRF2014, not only by the inclusion of more stations with longer and more complete position time series, but also by a general reduction in random and systematic errors. The IGS contribution to ITRF2020 also provided, for the first time, an independent estimate of the terrestrial scale based on the calibration of the Galileo satellite antennas. Despite the various observed improvements, the repro3 station position time series remain affected by a variety of random and systematic errors. This includes spurious periodic variations in several frequency bands, originating mostly from orbit and tide modeling errors, on top of a combination of white and flicker noise, whose origins remain to be precisely understood. These various components should carefully be accounted for when modeling GNSS station position time series and interpreting them in terms of Earth’s surface deformation. The Galileo-based scale of the repro3 solutions is found to be significantly offset (by <span>\\(+\\)</span>4.3 mm at epoch 2015.0) and drifting (by <span>\\(+\\)</span>0.11 mm/year) from the SLR/VLBI-based scale of ITRF2020. The reasons for this offset and drift remain to be uncovered.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"101 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the IGS contribution to ITRF2020\",\"authors\":\"Paul Rebischung, Zuheir Altamimi, Laurent Métivier, Xavier Collilieux, Kevin Gobron, Kristel Chanard\",\"doi\":\"10.1007/s00190-024-01870-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As its contribution to the latest release of the International Terrestrial Reference Frame, ITRF2020, the International GNSS Service (IGS) provided a 27-year-long series of daily “repro3” terrestrial frame solutions obtained by combining reprocessed solutions from ten Analysis Centers. This contribution represents an improvement over the previous contribution to ITRF2014, not only by the inclusion of more stations with longer and more complete position time series, but also by a general reduction in random and systematic errors. The IGS contribution to ITRF2020 also provided, for the first time, an independent estimate of the terrestrial scale based on the calibration of the Galileo satellite antennas. Despite the various observed improvements, the repro3 station position time series remain affected by a variety of random and systematic errors. This includes spurious periodic variations in several frequency bands, originating mostly from orbit and tide modeling errors, on top of a combination of white and flicker noise, whose origins remain to be precisely understood. These various components should carefully be accounted for when modeling GNSS station position time series and interpreting them in terms of Earth’s surface deformation. The Galileo-based scale of the repro3 solutions is found to be significantly offset (by <span>\\\\(+\\\\)</span>4.3 mm at epoch 2015.0) and drifting (by <span>\\\\(+\\\\)</span>0.11 mm/year) from the SLR/VLBI-based scale of ITRF2020. The reasons for this offset and drift remain to be uncovered.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01870-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01870-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
As its contribution to the latest release of the International Terrestrial Reference Frame, ITRF2020, the International GNSS Service (IGS) provided a 27-year-long series of daily “repro3” terrestrial frame solutions obtained by combining reprocessed solutions from ten Analysis Centers. This contribution represents an improvement over the previous contribution to ITRF2014, not only by the inclusion of more stations with longer and more complete position time series, but also by a general reduction in random and systematic errors. The IGS contribution to ITRF2020 also provided, for the first time, an independent estimate of the terrestrial scale based on the calibration of the Galileo satellite antennas. Despite the various observed improvements, the repro3 station position time series remain affected by a variety of random and systematic errors. This includes spurious periodic variations in several frequency bands, originating mostly from orbit and tide modeling errors, on top of a combination of white and flicker noise, whose origins remain to be precisely understood. These various components should carefully be accounted for when modeling GNSS station position time series and interpreting them in terms of Earth’s surface deformation. The Galileo-based scale of the repro3 solutions is found to be significantly offset (by \(+\)4.3 mm at epoch 2015.0) and drifting (by \(+\)0.11 mm/year) from the SLR/VLBI-based scale of ITRF2020. The reasons for this offset and drift remain to be uncovered.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics