叶状三折的均匀有理多面体和全局 ACC

IF 1 2区 数学 Q1 MATHEMATICS
Jihao Liu, Fanjun Meng, Lingyao Xie
{"title":"叶状三折的均匀有理多面体和全局 ACC","authors":"Jihao Liu,&nbsp;Fanjun Meng,&nbsp;Lingyao Xie","doi":"10.1112/jlms.12950","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show the existence of uniform rational lc polytopes for foliations with functional boundaries in dimension <span></span><math>\n <semantics>\n <mrow>\n <mo>⩽</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\leqslant 3$</annotation>\n </semantics></math>. As an application, we prove the global ACC for foliated threefolds with arbitrary DCC coefficients. We also provide applications on the accumulation points of lc thresholds of foliations in dimension <span></span><math>\n <semantics>\n <mrow>\n <mo>⩽</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\leqslant 3$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform rational polytopes of foliated threefolds and the global ACC\",\"authors\":\"Jihao Liu,&nbsp;Fanjun Meng,&nbsp;Lingyao Xie\",\"doi\":\"10.1112/jlms.12950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show the existence of uniform rational lc polytopes for foliations with functional boundaries in dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⩽</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\leqslant 3$</annotation>\\n </semantics></math>. As an application, we prove the global ACC for foliated threefolds with arbitrary DCC coefficients. We also provide applications on the accumulation points of lc thresholds of foliations in dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⩽</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\leqslant 3$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12950\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12950","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在⩽3维$\leqslant 3$中具有功能边界的叶状体存在均匀有理lc多面体。作为应用,我们证明了具有任意 DCC 系数的叶状三褶的全局 ACC。我们还提供了关于维数⩽ 3 $\leqslant 3$ 的叶状的 lc 阈值累积点的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform rational polytopes of foliated threefolds and the global ACC

In this paper, we show the existence of uniform rational lc polytopes for foliations with functional boundaries in dimension 3 $\leqslant 3$ . As an application, we prove the global ACC for foliated threefolds with arbitrary DCC coefficients. We also provide applications on the accumulation points of lc thresholds of foliations in dimension  3 $\leqslant 3$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信