佐藤-塔特联合分布中的素数模式

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Anas Chentouf , Catherine H. Cossaboom , Samuel E. Goldberg , Jack B. Miller
{"title":"佐藤-塔特联合分布中的素数模式","authors":"A. Anas Chentouf ,&nbsp;Catherine H. Cossaboom ,&nbsp;Samuel E. Goldberg ,&nbsp;Jack B. Miller","doi":"10.1016/j.jnt.2024.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>, let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>z</mi></mrow></msup></math></span> be a holomorphic, non-CM cuspidal newform of even weight <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> with trivial nebentypus. For each prime <em>p</em>, let <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></math></span> be the angle such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>=</mo><mn>2</mn><msup><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></msup><mi>cos</mi><mo>⁡</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span>. The now-proven Sato–Tate conjecture states that the angles <span><math><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>)</mo></math></span> equidistribute with respect to the measure <span><math><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>S</mi><mi>T</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>π</mi></mrow></mfrac><msup><mrow><mi>sin</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>θ</mi><mspace></mspace><mi>d</mi><mi>θ</mi></math></span>. We show that, if <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is not a character twist of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then for subintervals <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></math></span>, there exist infinitely many bounded gaps between the primes <em>p</em> such that <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We also prove a common generalization of the bounded gaps with the Green–Tao theorem.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"263 ","pages":"Pages 297-334"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns of primes in joint Sato–Tate distributions\",\"authors\":\"A. Anas Chentouf ,&nbsp;Catherine H. Cossaboom ,&nbsp;Samuel E. Goldberg ,&nbsp;Jack B. Miller\",\"doi\":\"10.1016/j.jnt.2024.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>, let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>z</mi></mrow></msup></math></span> be a holomorphic, non-CM cuspidal newform of even weight <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> with trivial nebentypus. For each prime <em>p</em>, let <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></math></span> be the angle such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>=</mo><mn>2</mn><msup><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></msup><mi>cos</mi><mo>⁡</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span>. The now-proven Sato–Tate conjecture states that the angles <span><math><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>)</mo></math></span> equidistribute with respect to the measure <span><math><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>S</mi><mi>T</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>π</mi></mrow></mfrac><msup><mrow><mi>sin</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>θ</mi><mspace></mspace><mi>d</mi><mi>θ</mi></math></span>. We show that, if <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is not a character twist of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then for subintervals <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></math></span>, there exist infinitely many bounded gaps between the primes <em>p</em> such that <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We also prove a common generalization of the bounded gaps with the Green–Tao theorem.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"263 \",\"pages\":\"Pages 297-334\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24000866\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 j=1,2,设 fj(z)=∑n=1∞aj(n)e2πinz 是偶数权 kj≥2 的全形非 Cuspidal 新形式,具有微不足道的新文垂。对于每个素数 p,让 θj(p)∈[0,π]成为 aj(p)=2p(k-1)/2cosθj(p)的角度。现已证明的佐藤泰特猜想指出,角度 (θj(p)) 相对于度量 dμST=2πsin2θdθ 等分布。我们证明,如果 f1 不是 f2 的特征捻,那么对于子区间 I1,I2⊆[0,π],在素数 p 之间存在无穷多个有界间隙,使得θ1(p)∈I1 和 θ2(p)∈I2。我们还用格林-陶定理证明了有界缺口的一般概化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patterns of primes in joint Sato–Tate distributions

For j=1,2, let fj(z)=n=1aj(n)e2πinz be a holomorphic, non-CM cuspidal newform of even weight kj2 with trivial nebentypus. For each prime p, let θj(p)[0,π] be the angle such that aj(p)=2p(k1)/2cosθj(p). The now-proven Sato–Tate conjecture states that the angles (θj(p)) equidistribute with respect to the measure dμST=2πsin2θdθ. We show that, if f1 is not a character twist of f2, then for subintervals I1,I2[0,π], there exist infinitely many bounded gaps between the primes p such that θ1(p)I1 and θ2(p)I2. We also prove a common generalization of the bounded gaps with the Green–Tao theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信