{"title":"岩堀级希尔伯特模块变体的紧凑性","authors":"Fred Diamond","doi":"10.1016/j.jnt.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><p>We study minimal and toroidal compactifications of <em>p</em>-integral models of Hilbert modular varieties. We review the theory in the setting of Iwahori level at primes over <em>p</em>, and extend it to certain finer level structures. We also prove extensions to compactifications of recent results on Iwahori-level Kodaira–Spencer isomorphisms and cohomological vanishing for degeneracy maps. Finally we apply the theory to study <em>q</em>-expansions of Hilbert modular forms, especially the effect of Hecke operators at primes over <em>p</em> over general base rings.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001161/pdfft?md5=b677fd9a2dc72751b9574178e03a6acc&pid=1-s2.0-S0022314X24001161-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Compactifications of Iwahori-level Hilbert modular varieties\",\"authors\":\"Fred Diamond\",\"doi\":\"10.1016/j.jnt.2024.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study minimal and toroidal compactifications of <em>p</em>-integral models of Hilbert modular varieties. We review the theory in the setting of Iwahori level at primes over <em>p</em>, and extend it to certain finer level structures. We also prove extensions to compactifications of recent results on Iwahori-level Kodaira–Spencer isomorphisms and cohomological vanishing for degeneracy maps. Finally we apply the theory to study <em>q</em>-expansions of Hilbert modular forms, especially the effect of Hecke operators at primes over <em>p</em> over general base rings.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001161/pdfft?md5=b677fd9a2dc72751b9574178e03a6acc&pid=1-s2.0-S0022314X24001161-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了希尔伯特模数变的 p 积分模型的极小和环压实。我们回顾了 p 以上素数岩堀级的理论,并将其扩展到某些更精细的级结构。我们还证明了最近关于岩堀级 Kodaira-Spencer 同构和退化映射的同调消失结果的紧凑化扩展。最后,我们将这一理论应用于研究希尔伯特模形式的 q-展开,特别是一般基环上 p 以上素数的赫克算子的影响。
Compactifications of Iwahori-level Hilbert modular varieties
We study minimal and toroidal compactifications of p-integral models of Hilbert modular varieties. We review the theory in the setting of Iwahori level at primes over p, and extend it to certain finer level structures. We also prove extensions to compactifications of recent results on Iwahori-level Kodaira–Spencer isomorphisms and cohomological vanishing for degeneracy maps. Finally we apply the theory to study q-expansions of Hilbert modular forms, especially the effect of Hecke operators at primes over p over general base rings.