Barry Goodell , James Chambers , Doyle V. Ward , Cecelia Murphy , Eileen Black , Lucca Bonjy Kikuti Mancilio , Gabriel Perez- Gonzalez , J. Reuben Shipway
{"title":"首次报告船虫消化系统中的微生物共生体;蛀木软体动物","authors":"Barry Goodell , James Chambers , Doyle V. Ward , Cecelia Murphy , Eileen Black , Lucca Bonjy Kikuti Mancilio , Gabriel Perez- Gonzalez , J. Reuben Shipway","doi":"10.1016/j.ibiod.2024.105816","DOIUrl":null,"url":null,"abstract":"<div><p>Shipworms, historically known for their destruction of wooden ships and coastal structures, play a key role in carbon and nutrient cycling in aquatic ecosystems. Despite extensive research, the exact mechanisms underlying their ability to digest wood have remained elusive, particularly regarding the degradation of lignin, a major component of wood that resists breakdown. Here we employ a combination of microbial culture, metagenomics, and FISH-probe microscopy analyses to explore previously overlooked aspects of their digestive system. Specifically, we identify the presence of bacterial symbionts within the typhlosole, a specialized structure within the main wood digestive organ (cecum), challenging the long-held belief that shipworm foreguts are nearly sterile environments. The discovery of <em>Alteromonas</em> species in bacterial clusters within the typhlosole suggests a symbiotic relationship that may play a crucial role in the digestion of woody substrates, offering a potential explanation for the shipworm's ability to degrade lignocellulose without ligninases from the host or gill symbionts. These findings provide insight into the digestive physiology and host defense of shipworms, but also suggests that the typhlosole in other related organisms might also harbor symbionts. This study also opens new insights into research into the ecological and biotechnological applications of shipworms and their gut symbionts, enhancing our understanding of lignocellulose degradation in marine environments.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0964830524000878/pdfft?md5=c568f8e4a2917835ebabc14cb490111e&pid=1-s2.0-S0964830524000878-main.pdf","citationCount":"0","resultStr":"{\"title\":\"First report of microbial symbionts in the digestive system of shipworms; wood boring mollusks\",\"authors\":\"Barry Goodell , James Chambers , Doyle V. Ward , Cecelia Murphy , Eileen Black , Lucca Bonjy Kikuti Mancilio , Gabriel Perez- Gonzalez , J. Reuben Shipway\",\"doi\":\"10.1016/j.ibiod.2024.105816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shipworms, historically known for their destruction of wooden ships and coastal structures, play a key role in carbon and nutrient cycling in aquatic ecosystems. Despite extensive research, the exact mechanisms underlying their ability to digest wood have remained elusive, particularly regarding the degradation of lignin, a major component of wood that resists breakdown. Here we employ a combination of microbial culture, metagenomics, and FISH-probe microscopy analyses to explore previously overlooked aspects of their digestive system. Specifically, we identify the presence of bacterial symbionts within the typhlosole, a specialized structure within the main wood digestive organ (cecum), challenging the long-held belief that shipworm foreguts are nearly sterile environments. The discovery of <em>Alteromonas</em> species in bacterial clusters within the typhlosole suggests a symbiotic relationship that may play a crucial role in the digestion of woody substrates, offering a potential explanation for the shipworm's ability to degrade lignocellulose without ligninases from the host or gill symbionts. These findings provide insight into the digestive physiology and host defense of shipworms, but also suggests that the typhlosole in other related organisms might also harbor symbionts. This study also opens new insights into research into the ecological and biotechnological applications of shipworms and their gut symbionts, enhancing our understanding of lignocellulose degradation in marine environments.</p></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0964830524000878/pdfft?md5=c568f8e4a2917835ebabc14cb490111e&pid=1-s2.0-S0964830524000878-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964830524000878\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524000878","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
船虫历来以破坏木船和海岸结构而闻名,在水生生态系统的碳和营养循环中发挥着关键作用。尽管进行了广泛的研究,但船虫消化木材能力的确切机制仍然难以捉摸,尤其是木质素的降解,木质素是木材的主要成分,具有抗分解性。在这里,我们将微生物培养、元基因组学和 FISH 探针显微镜分析结合起来,探索它们消化系统中以前被忽视的方面。具体来说,我们在主要木材消化器官(盲肠)内的一个特殊结构--typhlosole中发现了细菌共生体,这对长期以来认为船虫前肠几乎是无菌环境的观点提出了挑战。在typhlosole内的细菌群中发现Alteromonas物种表明了一种共生关系,这种关系可能在消化木质基质的过程中起着至关重要的作用,为船虫在没有宿主或鳃共生体的木质素酶的情况下降解木质纤维素的能力提供了一种可能的解释。这些发现有助于深入了解船虫的消化生理和宿主防御能力,同时也表明其他相关生物的typhlosole也可能藏有共生体。这项研究还为研究船虫及其肠道共生体的生态和生物技术应用开辟了新的视角,增强了我们对海洋环境中木质纤维素降解的了解。
First report of microbial symbionts in the digestive system of shipworms; wood boring mollusks
Shipworms, historically known for their destruction of wooden ships and coastal structures, play a key role in carbon and nutrient cycling in aquatic ecosystems. Despite extensive research, the exact mechanisms underlying their ability to digest wood have remained elusive, particularly regarding the degradation of lignin, a major component of wood that resists breakdown. Here we employ a combination of microbial culture, metagenomics, and FISH-probe microscopy analyses to explore previously overlooked aspects of their digestive system. Specifically, we identify the presence of bacterial symbionts within the typhlosole, a specialized structure within the main wood digestive organ (cecum), challenging the long-held belief that shipworm foreguts are nearly sterile environments. The discovery of Alteromonas species in bacterial clusters within the typhlosole suggests a symbiotic relationship that may play a crucial role in the digestion of woody substrates, offering a potential explanation for the shipworm's ability to degrade lignocellulose without ligninases from the host or gill symbionts. These findings provide insight into the digestive physiology and host defense of shipworms, but also suggests that the typhlosole in other related organisms might also harbor symbionts. This study also opens new insights into research into the ecological and biotechnological applications of shipworms and their gut symbionts, enhancing our understanding of lignocellulose degradation in marine environments.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.