灰猫上的半严格生成封闭结构

Pub Date : 2024-05-29 DOI:10.1016/j.jpaa.2024.107740
Adrian Miranda
{"title":"灰猫上的半严格生成封闭结构","authors":"Adrian Miranda","doi":"10.1016/j.jpaa.2024.107740","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the semi-strictly generated internal homs of <strong>Gray</strong>-categories <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo></mrow><mrow><mtext>ssg</mtext></mrow></msub></math></span> defined in <span>[19]</span> underlie a closed structure on the category <strong>Gray</strong>-<strong>Cat</strong> of <strong>Gray</strong>-categories and <strong>Gray</strong>-functors. The morphisms of <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo></mrow><mrow><mtext>ssg</mtext></mrow></msub></math></span> are composites of those trinatural transformations which satisfy the unit and composition conditions for pseudonatural transformations on the nose rather than up to an invertible 3-cell. Such trinatural transformations leverage three-dimensional strictification <span>[19]</span> while overcoming the challenges posed by failure of middle four interchange to hold in <strong>Gray</strong>-categories <span>[3]</span>. As a result we obtain a closed structure that is only partially monoidal with respect to <span>[8]</span>. As a corollary we obtain a slight strengthening of strictification results for braided monoidal bicategories <span>[13]</span>, which will be improved further in a forthcoming paper <span>[21]</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-strictly generated closed structure on Gray-Cat\",\"authors\":\"Adrian Miranda\",\"doi\":\"10.1016/j.jpaa.2024.107740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the semi-strictly generated internal homs of <strong>Gray</strong>-categories <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo></mrow><mrow><mtext>ssg</mtext></mrow></msub></math></span> defined in <span>[19]</span> underlie a closed structure on the category <strong>Gray</strong>-<strong>Cat</strong> of <strong>Gray</strong>-categories and <strong>Gray</strong>-functors. The morphisms of <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo></mrow><mrow><mtext>ssg</mtext></mrow></msub></math></span> are composites of those trinatural transformations which satisfy the unit and composition conditions for pseudonatural transformations on the nose rather than up to an invertible 3-cell. Such trinatural transformations leverage three-dimensional strictification <span>[19]</span> while overcoming the challenges posed by failure of middle four interchange to hold in <strong>Gray</strong>-categories <span>[3]</span>. As a result we obtain a closed structure that is only partially monoidal with respect to <span>[8]</span>. As a corollary we obtain a slight strengthening of strictification results for braided monoidal bicategories <span>[13]</span>, which will be improved further in a forthcoming paper <span>[21]</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了[19]中定义的灰色范畴[A,B]sg的半严格生成的内部原子是灰色范畴和灰色函数的灰色猫范畴的封闭结构的基础。[A,B]ssg的变形是那些满足鼻子上的伪自然变换的单位条件和组成条件的三自然变换的复合体,而不是直到可逆的3单元。这种三自然变换利用了三维严格化[19],同时克服了灰色范畴[3]中中间四互换不成立所带来的挑战。因此,我们得到了一个封闭的结构,这个结构相对于[8]而言只是部分单模的。作为推论,我们得到了对辫状单环二元范畴[13]的严格化结果的轻微加强,这将在即将发表的论文[21]中得到进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A semi-strictly generated closed structure on Gray-Cat

We show that the semi-strictly generated internal homs of Gray-categories [A,B]ssg defined in [19] underlie a closed structure on the category Gray-Cat of Gray-categories and Gray-functors. The morphisms of [A,B]ssg are composites of those trinatural transformations which satisfy the unit and composition conditions for pseudonatural transformations on the nose rather than up to an invertible 3-cell. Such trinatural transformations leverage three-dimensional strictification [19] while overcoming the challenges posed by failure of middle four interchange to hold in Gray-categories [3]. As a result we obtain a closed structure that is only partially monoidal with respect to [8]. As a corollary we obtain a slight strengthening of strictification results for braided monoidal bicategories [13], which will be improved further in a forthcoming paper [21].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信