Steven E Petersen, Benjamin A Seitzman, Steven M Nelson, Gagan S Wig, Evan M Gordon
{"title":"皮层区域原理及其对神经影像学的影响。","authors":"Steven E Petersen, Benjamin A Seitzman, Steven M Nelson, Gagan S Wig, Evan M Gordon","doi":"10.1016/j.neuron.2024.05.008","DOIUrl":null,"url":null,"abstract":"<p><p>Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what \"computations\" or \"functions\" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2837-2853"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principles of cortical areas and their implications for neuroimaging.\",\"authors\":\"Steven E Petersen, Benjamin A Seitzman, Steven M Nelson, Gagan S Wig, Evan M Gordon\",\"doi\":\"10.1016/j.neuron.2024.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what \\\"computations\\\" or \\\"functions\\\" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"2837-2853\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2024.05.008\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.05.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Principles of cortical areas and their implications for neuroimaging.
Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.