Wiekolize Rothmann-Meyer , Kershney Naidoo , Pamela J. de Waal
{"title":"Spirocerca lupi 基因组草案、疫苗和驱虫药目标。","authors":"Wiekolize Rothmann-Meyer , Kershney Naidoo , Pamela J. de Waal","doi":"10.1016/j.molbiopara.2024.111632","DOIUrl":null,"url":null,"abstract":"<div><p><em>Spirocerca lupi</em> is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of <em>S. lupi</em> consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for β-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in <em>S. lupi</em> by comparing orthologs of <em>C. elegans</em> anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111632"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166685124000252/pdfft?md5=30536aa8d35ccf82718a7e1b8f5f1cd6&pid=1-s2.0-S0166685124000252-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spirocerca lupi draft genome, vaccine and anthelmintic targets\",\"authors\":\"Wiekolize Rothmann-Meyer , Kershney Naidoo , Pamela J. de Waal\",\"doi\":\"10.1016/j.molbiopara.2024.111632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Spirocerca lupi</em> is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of <em>S. lupi</em> consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for β-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in <em>S. lupi</em> by comparing orthologs of <em>C. elegans</em> anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.</p></div>\",\"PeriodicalId\":18721,\"journal\":{\"name\":\"Molecular and biochemical parasitology\",\"volume\":\"259 \",\"pages\":\"Article 111632\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166685124000252/pdfft?md5=30536aa8d35ccf82718a7e1b8f5f1cd6&pid=1-s2.0-S0166685124000252-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and biochemical parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166685124000252\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685124000252","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
Spirocerca lupi 是一种主要影响家犬的寄生线虫。它导致的螺旋体病通常是致命的。S. lupi 的基因组草案包括 13,627 个预测的蛋白编码基因,长度约为 150Mb。通过比较 C. elegans 抗蠕虫基因靶点的直向同源物以及已知候选疫苗的直向同源物,确定了 S. lupi 的几个已知抗蠕虫基因靶点,如 β-管蛋白、谷氨酸和 GABA 受体,以及已知疫苗基因靶点,如半胱氨酸蛋白酶抑制剂和细胞因子。通过包含-排除策略预测了新的驱虫药靶标,并通过免疫信息学方法预测了新的疫苗靶标。新的抗蠕虫药靶标包括DNA定向RNA聚合酶、几丁质合成酶、聚合酶和其他酶。新的疫苗靶点包括角质层胶原。这些基因靶点为新药鉴定和疫苗设计提供了一个起始平台。
Spirocerca lupi draft genome, vaccine and anthelmintic targets
Spirocerca lupi is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of S. lupi consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for β-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in S. lupi by comparing orthologs of C. elegans anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.
期刊介绍:
The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are:
• the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances
• intermediary metabolism and bioenergetics
• drug target characterization and the mode of action of antiparasitic drugs
• molecular and biochemical aspects of membrane structure and function
• host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules.
• analysis of genes and genome structure, function and expression
• analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance.
• parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules
• parasite programmed cell death, development, and cell division at the molecular level.