循环细菌肽和相关代谢组学特征是小儿肝硬化早期死亡的指标。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-06-05 eCollection Date: 2024-06-01 DOI:10.1097/HC9.0000000000000440
Babu Mathew, Gaurav Tripathi, Vipul Gautam, Vasundhra Bindal, Nupur Sharma, Manisha Yadav, Sushmita Pandey, Neha Sharma, Abhishak C Gupta, Sadam H Bhat, Akhilesh K Saini, Vikrant Sood, Bikrant Bihari Lal, Seema Alam, Rajeev Khanna, Jaswinder Singh Maras
{"title":"循环细菌肽和相关代谢组学特征是小儿肝硬化早期死亡的指标。","authors":"Babu Mathew, Gaurav Tripathi, Vipul Gautam, Vasundhra Bindal, Nupur Sharma, Manisha Yadav, Sushmita Pandey, Neha Sharma, Abhishak C Gupta, Sadam H Bhat, Akhilesh K Saini, Vikrant Sood, Bikrant Bihari Lal, Seema Alam, Rajeev Khanna, Jaswinder Singh Maras","doi":"10.1097/HC9.0000000000000440","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms.</p><p><strong>Methods: </strong>We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort.</p><p><strong>Results: </strong>Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm.</p><p><strong>Conclusions: </strong>Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155604/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circulating bacterial peptides and linked metabolomic signatures are indicative of early mortality in pediatric cirrhosis.\",\"authors\":\"Babu Mathew, Gaurav Tripathi, Vipul Gautam, Vasundhra Bindal, Nupur Sharma, Manisha Yadav, Sushmita Pandey, Neha Sharma, Abhishak C Gupta, Sadam H Bhat, Akhilesh K Saini, Vikrant Sood, Bikrant Bihari Lal, Seema Alam, Rajeev Khanna, Jaswinder Singh Maras\",\"doi\":\"10.1097/HC9.0000000000000440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms.</p><p><strong>Methods: </strong>We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort.</p><p><strong>Results: </strong>Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm.</p><p><strong>Conclusions: </strong>Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HC9.0000000000000440\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000440","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:小儿肝硬化败血症(PC-S)患者死亡率较高。血浆细菌组成、同源代谢物及其对 PC-S 患者病情恶化和早期死亡的影响尚不清楚。我们的目的是描绘血浆元蛋白组-代谢组图谱,并确定能够从血浆中分离出易导致早期死亡的PC-S患者的分子指标,我们还利用UHPLC-HRMS进行非靶向元蛋白组-代谢组学研究,在配对的1滴血样本中进一步验证了所选的代谢物面板,然后利用机器学习算法进行了验证:我们招募了160名肝病患者(肝硬化-败血症/非肝硬化[n=110]和非肝硬化[n=50]),并对110名患者(肝硬化-败血症/非肝硬化,n=70和非肝硬化,n=40)的训练队列进行了非靶向元蛋白组学-代谢组学研究。候选预测因子在两个测试组群--T1(血浆测试组群)和 T2(一滴血测试组群)中得到验证。T1和T2各有120名患者,其中70名来自训练队列:结果:色氨酸代谢物、沙门氏菌和大肠埃希氏菌相关肽水平升高,可将肝硬化患者区分开来。脱氧核糖-1-磷酸、N5-柠檬酰-d-鸟氨酸、Herbinix半纤维素溶解物和Leifsonia xyli水平升高,可分离出PC-S患者。基于 WMCNA-WMpCNA 的 MMCN 整合分析确定了与 PC-S 非存活者相关的关键微生物代谢模块。增加的茚地坎、司他洛比林、6-磷酸葡萄糖、2-辛烯酰肉碱、棕榈酸和鸟苷酸以及木虱、生殖器支原体和热荚膜梭菌可分离出PC-S非存活患者,并取代肝病严重程度指数,使用随机森林机器学习算法预测死亡率时具有较高的准确性、敏感性和特异性:我们的研究揭示了一种新的代谢物特征面板,它能利用低至一滴血的样本将易导致早期死亡的 PC-S 患者分离出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circulating bacterial peptides and linked metabolomic signatures are indicative of early mortality in pediatric cirrhosis.

Background: Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms.

Methods: We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort.

Results: Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm.

Conclusions: Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信