Seungju Lee, Jong Geun Seong, YoungSuk Jo, Son-Jong Hwang, Gyeongseok Gwak, Yongha Park, Yeong Cheon Kim, Katie Heeyum Lim, Hee-Young Park, Jong Hyun Jang, Hyoung-Juhn Kim, Suk-Woo Nam, So Young Lee
{"title":"在 250 °C 下应用于燃料电池的自组装网络聚合物电解质膜","authors":"Seungju Lee, Jong Geun Seong, YoungSuk Jo, Son-Jong Hwang, Gyeongseok Gwak, Yongha Park, Yeong Cheon Kim, Katie Heeyum Lim, Hee-Young Park, Jong Hyun Jang, Hyoung-Juhn Kim, Suk-Woo Nam, So Young Lee","doi":"10.1038/s41560-024-01536-4","DOIUrl":null,"url":null,"abstract":"Operating polymer electrolyte membrane (PEM) fuel cells at high temperatures can simplify water management and allow integration with high-purity fuel processing units. However, existing polybenzimidazole (PBI)-based PEM fuel cells face challenges due to the instability of proton transport above 160 °C. Here we report a PEM composed of para-PBI (p-PBI) and cerium hydrogen phosphate (CeHP) that can be used in a fuel cell at up to 250 °C. During fabrication, echinoid-shaped CeHP particles form a well-dispersed and interconnected self-assembled network within the PBI matrix (SAN–CeHP–PBI), allowing them to outperform p-PBI and conventional CeHP–PBI PEMs in terms of proton transport above 200 °C. We report a SAN–CeHP–PBI-based fuel cell that reaches a maximum power density of 2.35 W cm−2 (at 250 °C in dry H2/O2) with negligible degradation over 500 h during thermal cycling (at 160–240 °C, H2/air). SAN–CeHP–PBI also demonstrates excellent CO tolerance, showing promise for integration with liquid hydrogen carrier systems. High-temperature operation of polymer electrolyte membrane fuel cells has some advantages but is also challenging due to the instability of proton transport above 160 °C. Here the authors report a polymer electrolyte membrane comprising well-dispersed and interconnected cerium hydrogen phosphate particles within a polymer matrix that performs well in a fuel cell at up to 250 °C.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-assembled network polymer electrolyte membranes for application in fuel cells at 250 °C\",\"authors\":\"Seungju Lee, Jong Geun Seong, YoungSuk Jo, Son-Jong Hwang, Gyeongseok Gwak, Yongha Park, Yeong Cheon Kim, Katie Heeyum Lim, Hee-Young Park, Jong Hyun Jang, Hyoung-Juhn Kim, Suk-Woo Nam, So Young Lee\",\"doi\":\"10.1038/s41560-024-01536-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operating polymer electrolyte membrane (PEM) fuel cells at high temperatures can simplify water management and allow integration with high-purity fuel processing units. However, existing polybenzimidazole (PBI)-based PEM fuel cells face challenges due to the instability of proton transport above 160 °C. Here we report a PEM composed of para-PBI (p-PBI) and cerium hydrogen phosphate (CeHP) that can be used in a fuel cell at up to 250 °C. During fabrication, echinoid-shaped CeHP particles form a well-dispersed and interconnected self-assembled network within the PBI matrix (SAN–CeHP–PBI), allowing them to outperform p-PBI and conventional CeHP–PBI PEMs in terms of proton transport above 200 °C. We report a SAN–CeHP–PBI-based fuel cell that reaches a maximum power density of 2.35 W cm−2 (at 250 °C in dry H2/O2) with negligible degradation over 500 h during thermal cycling (at 160–240 °C, H2/air). SAN–CeHP–PBI also demonstrates excellent CO tolerance, showing promise for integration with liquid hydrogen carrier systems. High-temperature operation of polymer electrolyte membrane fuel cells has some advantages but is also challenging due to the instability of proton transport above 160 °C. Here the authors report a polymer electrolyte membrane comprising well-dispersed and interconnected cerium hydrogen phosphate particles within a polymer matrix that performs well in a fuel cell at up to 250 °C.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01536-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01536-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Self-assembled network polymer electrolyte membranes for application in fuel cells at 250 °C
Operating polymer electrolyte membrane (PEM) fuel cells at high temperatures can simplify water management and allow integration with high-purity fuel processing units. However, existing polybenzimidazole (PBI)-based PEM fuel cells face challenges due to the instability of proton transport above 160 °C. Here we report a PEM composed of para-PBI (p-PBI) and cerium hydrogen phosphate (CeHP) that can be used in a fuel cell at up to 250 °C. During fabrication, echinoid-shaped CeHP particles form a well-dispersed and interconnected self-assembled network within the PBI matrix (SAN–CeHP–PBI), allowing them to outperform p-PBI and conventional CeHP–PBI PEMs in terms of proton transport above 200 °C. We report a SAN–CeHP–PBI-based fuel cell that reaches a maximum power density of 2.35 W cm−2 (at 250 °C in dry H2/O2) with negligible degradation over 500 h during thermal cycling (at 160–240 °C, H2/air). SAN–CeHP–PBI also demonstrates excellent CO tolerance, showing promise for integration with liquid hydrogen carrier systems. High-temperature operation of polymer electrolyte membrane fuel cells has some advantages but is also challenging due to the instability of proton transport above 160 °C. Here the authors report a polymer electrolyte membrane comprising well-dispersed and interconnected cerium hydrogen phosphate particles within a polymer matrix that performs well in a fuel cell at up to 250 °C.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.