用富氧空位装饰 In2O3 以增强 In2S3 的光催化氢气转化能力

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Changxue Dong, Qiuyan Chen, Xin Deng, Lan Jiang, Han Tan, Yufeng Zhou, Jinwei Chen* and Ruilin Wang*, 
{"title":"用富氧空位装饰 In2O3 以增强 In2S3 的光催化氢气转化能力","authors":"Changxue Dong,&nbsp;Qiuyan Chen,&nbsp;Xin Deng,&nbsp;Lan Jiang,&nbsp;Han Tan,&nbsp;Yufeng Zhou,&nbsp;Jinwei Chen* and Ruilin Wang*,&nbsp;","doi":"10.1021/acs.inorgchem.4c00720","DOIUrl":null,"url":null,"abstract":"<p >The hydrogen (H<sub>2</sub>) evolution rates of photocatalysts suffer from weak oxidation and reduction ability and low photogenerated charge carrier separation efficiency. Herein, by combining band-gap structure optimization and vacancy modulation through a one-step hydrothermal method, In<sub>2</sub>O<sub>3</sub> containing oxygen vacancy (O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>) is simply introduced into In<sub>2</sub>S<sub>3</sub> to promote photocatalytic hydrogen evolution. Specifically, the change in the sulfur source ratio can induce the coexistence of O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub> and In<sub>2</sub>S<sub>3</sub> in a high-temperature hydrothermal process. Under light irradiation, In<sub>2</sub>S<sub>3</sub>@O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>-0.1 nanosheets hold a remarkable average H<sub>2</sub> evolution rate up to 4.04 mmol g<sup>–1</sup> h<sup>–1</sup>, which is 32.14, 11.91, and 2.25-fold better than those of pristine In<sub>2</sub>S<sub>3</sub>, In<sub>2</sub>S<sub>3</sub>@O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>-0.02, and In<sub>2</sub>S<sub>3</sub>@O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>-0.25 nanosheets, respectively. The ultraviolet–visible (UV–vis) diffuse reflectance and photoluminescence (PL) spectra reveal that the formation of O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub> in In<sub>2</sub>S<sub>3</sub> optimizes the band-gap structure and accelerates the migration of the photogenerated charge carrier of In<sub>2</sub>S<sub>3</sub>@O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>-<i>x</i> nanosheets, respectively. Both the enhancement of oxidation and reduction ability and photogenerated charge carrier separation ability are responsible for the remarkable improvement in photocatalytic H<sub>2</sub> evolution performance. This work provides a new strategy to prepare a composite of metal sulfide and metal oxide through a one-step hydrothermal method.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 24","pages":"11125–11134"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Photocatalytic Hydrogen Evolution of In2S3 by Decorating In2O3 with Rich Oxygen Vacancies\",\"authors\":\"Changxue Dong,&nbsp;Qiuyan Chen,&nbsp;Xin Deng,&nbsp;Lan Jiang,&nbsp;Han Tan,&nbsp;Yufeng Zhou,&nbsp;Jinwei Chen* and Ruilin Wang*,&nbsp;\",\"doi\":\"10.1021/acs.inorgchem.4c00720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The hydrogen (H<sub>2</sub>) evolution rates of photocatalysts suffer from weak oxidation and reduction ability and low photogenerated charge carrier separation efficiency. Herein, by combining band-gap structure optimization and vacancy modulation through a one-step hydrothermal method, In<sub>2</sub>O<sub>3</sub> containing oxygen vacancy (O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>) is simply introduced into In<sub>2</sub>S<sub>3</sub> to promote photocatalytic hydrogen evolution. Specifically, the change in the sulfur source ratio can induce the coexistence of O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub> and In<sub>2</sub>S<sub>3</sub> in a high-temperature hydrothermal process. Under light irradiation, In<sub>2</sub>S<sub>3</sub>@O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>-0.1 nanosheets hold a remarkable average H<sub>2</sub> evolution rate up to 4.04 mmol g<sup>–1</sup> h<sup>–1</sup>, which is 32.14, 11.91, and 2.25-fold better than those of pristine In<sub>2</sub>S<sub>3</sub>, In<sub>2</sub>S<sub>3</sub>@O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>-0.02, and In<sub>2</sub>S<sub>3</sub>@O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>-0.25 nanosheets, respectively. The ultraviolet–visible (UV–vis) diffuse reflectance and photoluminescence (PL) spectra reveal that the formation of O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub> in In<sub>2</sub>S<sub>3</sub> optimizes the band-gap structure and accelerates the migration of the photogenerated charge carrier of In<sub>2</sub>S<sub>3</sub>@O<sub>v</sub>/In<sub>2</sub>O<sub>3</sub>-<i>x</i> nanosheets, respectively. Both the enhancement of oxidation and reduction ability and photogenerated charge carrier separation ability are responsible for the remarkable improvement in photocatalytic H<sub>2</sub> evolution performance. This work provides a new strategy to prepare a composite of metal sulfide and metal oxide through a one-step hydrothermal method.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"63 24\",\"pages\":\"11125–11134\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00720\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00720","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

光催化剂的氢气(H2)进化率存在氧化还原能力弱和光生电荷载流子分离效率低的问题。在此,通过一步水热法将带隙结构优化和空位调控相结合,在 In2S3 中简单引入含有氧空位(Ov/In2O3)的 In2O3,从而促进光催化氢进化。具体来说,在高温水热过程中,硫源比例的改变可诱导 Ov/In2O3 与 In2S3 共存。在光照射下,In2S3@Ov/In2O3-0.1 纳米片的平均 H2 演化率高达 4.04 mmol g-1 h-1,分别是原始 In2S3、In2S3@Ov/In2O3-0.02 和 In2S3@Ov/In2O3-0.25 纳米片的 32.14、11.91 和 2.25 倍。紫外-可见光漫反射和光致发光光谱显示,In2S3 中 Ov/In2O3 的形成分别优化了 In2S3@Ov/In2O3-x 纳米片的带隙结构和加速了光生电荷载流子的迁移。氧化还原能力和光生电荷载流子分离能力的增强是光催化 H2 演化性能显著提高的原因。这项研究为一步水热法制备金属硫化物和金属氧化物复合材料提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Photocatalytic Hydrogen Evolution of In2S3 by Decorating In2O3 with Rich Oxygen Vacancies

Enhanced Photocatalytic Hydrogen Evolution of In2S3 by Decorating In2O3 with Rich Oxygen Vacancies

Enhanced Photocatalytic Hydrogen Evolution of In2S3 by Decorating In2O3 with Rich Oxygen Vacancies

The hydrogen (H2) evolution rates of photocatalysts suffer from weak oxidation and reduction ability and low photogenerated charge carrier separation efficiency. Herein, by combining band-gap structure optimization and vacancy modulation through a one-step hydrothermal method, In2O3 containing oxygen vacancy (Ov/In2O3) is simply introduced into In2S3 to promote photocatalytic hydrogen evolution. Specifically, the change in the sulfur source ratio can induce the coexistence of Ov/In2O3 and In2S3 in a high-temperature hydrothermal process. Under light irradiation, In2S3@Ov/In2O3-0.1 nanosheets hold a remarkable average H2 evolution rate up to 4.04 mmol g–1 h–1, which is 32.14, 11.91, and 2.25-fold better than those of pristine In2S3, In2S3@Ov/In2O3-0.02, and In2S3@Ov/In2O3-0.25 nanosheets, respectively. The ultraviolet–visible (UV–vis) diffuse reflectance and photoluminescence (PL) spectra reveal that the formation of Ov/In2O3 in In2S3 optimizes the band-gap structure and accelerates the migration of the photogenerated charge carrier of In2S3@Ov/In2O3-x nanosheets, respectively. Both the enhancement of oxidation and reduction ability and photogenerated charge carrier separation ability are responsible for the remarkable improvement in photocatalytic H2 evolution performance. This work provides a new strategy to prepare a composite of metal sulfide and metal oxide through a one-step hydrothermal method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信