中空镍锰普鲁士蓝类似物中离子存储动力学的多尺度细化,以增强电容式去离子效果

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Adekunle Adedapo Obisanya, Liang Ma, Jinkang Liu, Tianshuo Yang, Zhibin Ren, Xinyi Tan, Faming Gao, Jianren Wang
{"title":"中空镍锰普鲁士蓝类似物中离子存储动力学的多尺度细化,以增强电容式去离子效果","authors":"Adekunle Adedapo Obisanya,&nbsp;Liang Ma,&nbsp;Jinkang Liu,&nbsp;Tianshuo Yang,&nbsp;Zhibin Ren,&nbsp;Xinyi Tan,&nbsp;Faming Gao,&nbsp;Jianren Wang","doi":"10.1002/adfm.202404591","DOIUrl":null,"url":null,"abstract":"<p>Prussian blue analogues (PBAs) are a class of promising materials for capacitive deionization. However, the kinetic mismatch between their slow ion storage rate and the demand from short-time desalination severely limits their desalination performance. Here, a group of structure-tuneable Ni-Mn PBAs have been developed by a combination strategy of surface-protected chemical etching and Ostwald ripening to study their ion storage kinetics. Treating them as demos, the characterizations and investigations, e.g., in situ XRD in a three-electrode system, dynamic impedance, finite element simulation, and DFT calculations etc., reveal that the slow ion diffusion caused by the severe agglomeration of the nanoparticles and the unsuitable lattice parameter controls the final desalination behavior. Therefore, the correspondingly optimized sample (HC-t) possessing a microscale hollow structure, nanoscale shell thickness, and expanded lattice, displays a fast ion storage kinetics with the ratio of surface-controlled current as high as 82% at a scan rate of 20 mV s<sup>−1</sup>. Consequently, it delivers an impressive desalination capacity of 120.8 mg g<sup>−1</sup> (2.06 mmol g<sup>−1</sup> Na<sup>+</sup>) with a fast average desalination rate of 0.25 mg g<sup>−1</sup> s<sup>−1</sup> (0.004 mmol g<sup>−1</sup> s<sup>−1</sup>) at 1.2 V, competitive with those reported in the literature. Moreover, the elucidation of the structure-performance correlation provides valuable insights for the development and design of next-generation PBAs for capacitive deionization (CDI).</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 44","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Scrutinizing Ion Storage Kinetics in Hollow Ni-Mn Prussian Blue Analogues for Enhanced Capacitive Deionization\",\"authors\":\"Adekunle Adedapo Obisanya,&nbsp;Liang Ma,&nbsp;Jinkang Liu,&nbsp;Tianshuo Yang,&nbsp;Zhibin Ren,&nbsp;Xinyi Tan,&nbsp;Faming Gao,&nbsp;Jianren Wang\",\"doi\":\"10.1002/adfm.202404591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prussian blue analogues (PBAs) are a class of promising materials for capacitive deionization. However, the kinetic mismatch between their slow ion storage rate and the demand from short-time desalination severely limits their desalination performance. Here, a group of structure-tuneable Ni-Mn PBAs have been developed by a combination strategy of surface-protected chemical etching and Ostwald ripening to study their ion storage kinetics. Treating them as demos, the characterizations and investigations, e.g., in situ XRD in a three-electrode system, dynamic impedance, finite element simulation, and DFT calculations etc., reveal that the slow ion diffusion caused by the severe agglomeration of the nanoparticles and the unsuitable lattice parameter controls the final desalination behavior. Therefore, the correspondingly optimized sample (HC-t) possessing a microscale hollow structure, nanoscale shell thickness, and expanded lattice, displays a fast ion storage kinetics with the ratio of surface-controlled current as high as 82% at a scan rate of 20 mV s<sup>−1</sup>. Consequently, it delivers an impressive desalination capacity of 120.8 mg g<sup>−1</sup> (2.06 mmol g<sup>−1</sup> Na<sup>+</sup>) with a fast average desalination rate of 0.25 mg g<sup>−1</sup> s<sup>−1</sup> (0.004 mmol g<sup>−1</sup> s<sup>−1</sup>) at 1.2 V, competitive with those reported in the literature. Moreover, the elucidation of the structure-performance correlation provides valuable insights for the development and design of next-generation PBAs for capacitive deionization (CDI).</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 44\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202404591\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202404591","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

普鲁士蓝类似物(PBAs)是一类很有前途的电容式去离子材料。然而,其缓慢的离子存储速率与短时间脱盐需求之间的动力学不匹配严重限制了其脱盐性能。在此,我们采用表面保护化学蚀刻和奥斯特瓦尔德熟化相结合的策略,开发了一组结构可调的镍锰 PBA,以研究其离子存储动力学。将这些样品作为演示品,通过在三电极系统中进行原位 XRD、动态阻抗、有限元模拟和 DFT 计算等表征和研究,发现由于纳米颗粒的严重团聚和不合适的晶格参数导致离子扩散缓慢,从而控制了最终的脱盐行为。因此,相应优化的样品(HC-t)具有微尺度的中空结构、纳米级的外壳厚度和扩展的晶格,在 20 mV s-1 的扫描速率下显示出快速的离子存储动力学,表面控制电流比高达 82%。因此,它的脱盐能力达到了惊人的 120.8 mg g-1(2.06 mmol g-1 Na+),在 1.2 V 电压下的平均脱盐速度为 0.25 mg g-1 s-1(0.004 mmol g-1 s-1),与文献报道的脱盐速度相当。此外,结构-性能相关性的阐明为开发和设计用于电容式去离子(CDI)的下一代 PBA 提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscale Scrutinizing Ion Storage Kinetics in Hollow Ni-Mn Prussian Blue Analogues for Enhanced Capacitive Deionization

Multiscale Scrutinizing Ion Storage Kinetics in Hollow Ni-Mn Prussian Blue Analogues for Enhanced Capacitive Deionization

Multiscale Scrutinizing Ion Storage Kinetics in Hollow Ni-Mn Prussian Blue Analogues for Enhanced Capacitive Deionization

Multiscale Scrutinizing Ion Storage Kinetics in Hollow Ni-Mn Prussian Blue Analogues for Enhanced Capacitive Deionization

Prussian blue analogues (PBAs) are a class of promising materials for capacitive deionization. However, the kinetic mismatch between their slow ion storage rate and the demand from short-time desalination severely limits their desalination performance. Here, a group of structure-tuneable Ni-Mn PBAs have been developed by a combination strategy of surface-protected chemical etching and Ostwald ripening to study their ion storage kinetics. Treating them as demos, the characterizations and investigations, e.g., in situ XRD in a three-electrode system, dynamic impedance, finite element simulation, and DFT calculations etc., reveal that the slow ion diffusion caused by the severe agglomeration of the nanoparticles and the unsuitable lattice parameter controls the final desalination behavior. Therefore, the correspondingly optimized sample (HC-t) possessing a microscale hollow structure, nanoscale shell thickness, and expanded lattice, displays a fast ion storage kinetics with the ratio of surface-controlled current as high as 82% at a scan rate of 20 mV s−1. Consequently, it delivers an impressive desalination capacity of 120.8 mg g−1 (2.06 mmol g−1 Na+) with a fast average desalination rate of 0.25 mg g−1 s−1 (0.004 mmol g−1 s−1) at 1.2 V, competitive with those reported in the literature. Moreover, the elucidation of the structure-performance correlation provides valuable insights for the development and design of next-generation PBAs for capacitive deionization (CDI).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信