网络异常现象检测和故障规模估算方法

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Naoya Ogawa;Ryoichi Kawahara
{"title":"网络异常现象检测和故障规模估算方法","authors":"Naoya Ogawa;Ryoichi Kawahara","doi":"10.23919/comex.2024XBL0028","DOIUrl":null,"url":null,"abstract":"In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 6","pages":"206-209"},"PeriodicalIF":0.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494939","citationCount":"0","resultStr":"{\"title\":\"Method for Network-Anomaly Detection and Failure-Scale Estimation\",\"authors\":\"Naoya Ogawa;Ryoichi Kawahara\",\"doi\":\"10.23919/comex.2024XBL0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 6\",\"pages\":\"206-209\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494939\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10494939/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494939/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种利用自动编码器(一种神经网络)进行网络异常现象检测和故障规模估计的新方法。所提议的方法首先将网络分为若干组。随后,使用自动编码器检测每个组间流量的异常情况,并根据检测到异常情况的自动编码器数量估算故障规模。我们通过使用网络模拟器 Mininet 构建的虚拟网络,对通信过程中的异常检测进行了实验研究,结果证实所提出的方法可以成功检测异常并估算故障规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method for Network-Anomaly Detection and Failure-Scale Estimation
In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信