环境变化的西尼罗河病毒流行模型的传播动力学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Inkyung Ahn , Wonhyung Choi , Jong-Shenq Guo
{"title":"环境变化的西尼罗河病毒流行模型的传播动力学","authors":"Inkyung Ahn ,&nbsp;Wonhyung Choi ,&nbsp;Jong-Shenq Guo","doi":"10.1016/j.nonrwa.2024.104144","DOIUrl":null,"url":null,"abstract":"<div><p>We study the disease-spreading dynamics of the West Nile virus (WNv) epidemic model under shifting climatic conditions. A WNv epidemic model is developed incorporating a shifting net growth term to depict the evolving mosquito habitat. First, we comprehensively characterize the spreading dynamics of mosquitoes for any given climate change speed compared with the intrinsic spreading speed of mosquitoes. Utilizing the results from mosquito dynamics, we determine the spreading dynamics of infected birds and mosquitoes, taking into account relationships among the shifting speed and the spreading speeds of mosquito and WNv. Ultimately, we find that infected mosquitoes and birds propagate, and their population densities converge to a stable positive endemic state. This paper provides crucial insights into the impact of climate change on the spread of vector-borne diseases such as WNv.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spreading dynamics for an epidemic model of West-Nile virus with shifting environment\",\"authors\":\"Inkyung Ahn ,&nbsp;Wonhyung Choi ,&nbsp;Jong-Shenq Guo\",\"doi\":\"10.1016/j.nonrwa.2024.104144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the disease-spreading dynamics of the West Nile virus (WNv) epidemic model under shifting climatic conditions. A WNv epidemic model is developed incorporating a shifting net growth term to depict the evolving mosquito habitat. First, we comprehensively characterize the spreading dynamics of mosquitoes for any given climate change speed compared with the intrinsic spreading speed of mosquitoes. Utilizing the results from mosquito dynamics, we determine the spreading dynamics of infected birds and mosquitoes, taking into account relationships among the shifting speed and the spreading speeds of mosquito and WNv. Ultimately, we find that infected mosquitoes and birds propagate, and their population densities converge to a stable positive endemic state. This paper provides crucial insights into the impact of climate change on the spread of vector-borne diseases such as WNv.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000841\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000841","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了西尼罗河病毒(WNv)流行模型在不断变化的气候条件下的疾病传播动态。我们建立了一个西尼罗河病毒流行模型,其中包含一个变化的净增长项来描述不断变化的蚊子栖息地。首先,与蚊子固有的传播速度相比,我们全面描述了任何给定气候变化速度下蚊子的传播动态。利用蚊子动力学的结果,我们确定了受感染鸟类和蚊子的传播动力学,并考虑了变化速度与蚊子和 WNv 传播速度之间的关系。最终,我们发现受感染的蚊子和鸟类会传播,其种群密度会趋于稳定的正流行状态。本文为气候变化对 WNv 等病媒传播疾病的影响提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spreading dynamics for an epidemic model of West-Nile virus with shifting environment

We study the disease-spreading dynamics of the West Nile virus (WNv) epidemic model under shifting climatic conditions. A WNv epidemic model is developed incorporating a shifting net growth term to depict the evolving mosquito habitat. First, we comprehensively characterize the spreading dynamics of mosquitoes for any given climate change speed compared with the intrinsic spreading speed of mosquitoes. Utilizing the results from mosquito dynamics, we determine the spreading dynamics of infected birds and mosquitoes, taking into account relationships among the shifting speed and the spreading speeds of mosquito and WNv. Ultimately, we find that infected mosquitoes and birds propagate, and their population densities converge to a stable positive endemic state. This paper provides crucial insights into the impact of climate change on the spread of vector-borne diseases such as WNv.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信