板块内岩浆-火山活动的地热资源潜力:中国东北长白山案例研究

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS
Chujie Cheng , Runchao Liu , Hui Wu , Bo Zhang , Jianlei Zheng , Bingrou Peng , Jinjiang Zhang
{"title":"板块内岩浆-火山活动的地热资源潜力:中国东北长白山案例研究","authors":"Chujie Cheng ,&nbsp;Runchao Liu ,&nbsp;Hui Wu ,&nbsp;Bo Zhang ,&nbsp;Jianlei Zheng ,&nbsp;Bingrou Peng ,&nbsp;Jinjiang Zhang","doi":"10.1016/j.geothermics.2024.103053","DOIUrl":null,"url":null,"abstract":"<div><p>Mount Changbai is an active volcano in Northeast China that has erupted several times since the Miocene. Investigating the potential high–temperature geothermal reservoirs associated with magma chambers under the volcano has a significant meaning for clean energy development and utilization. Through a geological field survey combined with drilling data and collected geophysical data, including seismic and magnetotelluric data, of the Mt. Changbai area, we constructed a geological model extending from the upper mantle to the surface. Based on the geological model, we performed thermal simulations to understand the evolution of temperature profiles under Mt. Changbai since the Miocene (∼25 Ma). The results were compared with temperature measurements from geothermal drilling and hot springs for validation. We found that: (1) The total temperature increase can reach ∼263 °C at –6 km (absolute depth) under the Mt. Changbai volcano. While the temperature increase has reached ∼224 °C since the shallow magma chamber appeared at ∼1.5 Ma, which accounts for &gt;80 % of the total temperature increase. (2) Surface cold–water infiltration caused the decrease of subsurface temperature. However, the water can result in local accumulation of heat with a temperature increase up to 44 °C. (3) Both hydrothermal and hot dry rock geothermal resources are abundant in the Mt. Changbai area. Sedimentary strata of the Meso–Neoproterozoic and above that have good porosity and permeability, forming hydrothermal reservoirs. The temperature can reach 150 °C at a depth of 3 km under the Tianchi crater and are transferred to the surface by water through faults. While, metamorphic rock of the Archean–Paleoproterozoic and intrusive rock of the Mesozoic can form hot dry rock geothermal reservoirs with a temperature of 200–400 °C at a depth of 4–7 km under the Tianchi crater and surrounding areas.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geothermal resource potential from intraplate magmatic–volcanic activities: A case study of Mt. Changbai in Northeast China\",\"authors\":\"Chujie Cheng ,&nbsp;Runchao Liu ,&nbsp;Hui Wu ,&nbsp;Bo Zhang ,&nbsp;Jianlei Zheng ,&nbsp;Bingrou Peng ,&nbsp;Jinjiang Zhang\",\"doi\":\"10.1016/j.geothermics.2024.103053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mount Changbai is an active volcano in Northeast China that has erupted several times since the Miocene. Investigating the potential high–temperature geothermal reservoirs associated with magma chambers under the volcano has a significant meaning for clean energy development and utilization. Through a geological field survey combined with drilling data and collected geophysical data, including seismic and magnetotelluric data, of the Mt. Changbai area, we constructed a geological model extending from the upper mantle to the surface. Based on the geological model, we performed thermal simulations to understand the evolution of temperature profiles under Mt. Changbai since the Miocene (∼25 Ma). The results were compared with temperature measurements from geothermal drilling and hot springs for validation. We found that: (1) The total temperature increase can reach ∼263 °C at –6 km (absolute depth) under the Mt. Changbai volcano. While the temperature increase has reached ∼224 °C since the shallow magma chamber appeared at ∼1.5 Ma, which accounts for &gt;80 % of the total temperature increase. (2) Surface cold–water infiltration caused the decrease of subsurface temperature. However, the water can result in local accumulation of heat with a temperature increase up to 44 °C. (3) Both hydrothermal and hot dry rock geothermal resources are abundant in the Mt. Changbai area. Sedimentary strata of the Meso–Neoproterozoic and above that have good porosity and permeability, forming hydrothermal reservoirs. The temperature can reach 150 °C at a depth of 3 km under the Tianchi crater and are transferred to the surface by water through faults. While, metamorphic rock of the Archean–Paleoproterozoic and intrusive rock of the Mesozoic can form hot dry rock geothermal reservoirs with a temperature of 200–400 °C at a depth of 4–7 km under the Tianchi crater and surrounding areas.</p></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650524001421\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524001421","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

长白山是中国东北地区的一座活火山,自中新世以来曾多次喷发。研究与火山下岩浆腔相关的潜在高温地热储层对清洁能源的开发利用具有重要意义。通过对长白山地区的实地地质调查,结合钻探数据和收集到的地球物理数据,包括地震和磁电数据,我们构建了一个从上地幔延伸到地表的地质模型。根据该地质模型,我们进行了热模拟,以了解自中新世(25 Ma∼)以来长白山下温度剖面的演变。我们将模拟结果与地热钻探和温泉的温度测量结果进行了对比验证。我们发现(1) 在长白山火山下-6 千米(绝对深度)处,总升温可达 ∼ 263 °C。而自 1.5 Ma ∼ 1.5 Ma 出现浅部岩浆腔以来,温度上升达 224 ℃,占总温度上升的 80%。(2)地表冷水渗透导致地下温度下降。(3) 长白山地区热液地热和干热岩地热资源丰富。中新生代及以上沉积地层具有良好的孔隙度和渗透性,形成热液储层。天池陨石坑下 3 千米深处的温度可达 150 ℃,并通过断层由水转移到地表。而在天池陨石坑及周边地区,奥陶系-古近纪的变质岩和中生代的侵入岩可形成干热岩地热储层,在天池陨石坑及周边地区4-7千米深处的温度可达200-400℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geothermal resource potential from intraplate magmatic–volcanic activities: A case study of Mt. Changbai in Northeast China

Mount Changbai is an active volcano in Northeast China that has erupted several times since the Miocene. Investigating the potential high–temperature geothermal reservoirs associated with magma chambers under the volcano has a significant meaning for clean energy development and utilization. Through a geological field survey combined with drilling data and collected geophysical data, including seismic and magnetotelluric data, of the Mt. Changbai area, we constructed a geological model extending from the upper mantle to the surface. Based on the geological model, we performed thermal simulations to understand the evolution of temperature profiles under Mt. Changbai since the Miocene (∼25 Ma). The results were compared with temperature measurements from geothermal drilling and hot springs for validation. We found that: (1) The total temperature increase can reach ∼263 °C at –6 km (absolute depth) under the Mt. Changbai volcano. While the temperature increase has reached ∼224 °C since the shallow magma chamber appeared at ∼1.5 Ma, which accounts for >80 % of the total temperature increase. (2) Surface cold–water infiltration caused the decrease of subsurface temperature. However, the water can result in local accumulation of heat with a temperature increase up to 44 °C. (3) Both hydrothermal and hot dry rock geothermal resources are abundant in the Mt. Changbai area. Sedimentary strata of the Meso–Neoproterozoic and above that have good porosity and permeability, forming hydrothermal reservoirs. The temperature can reach 150 °C at a depth of 3 km under the Tianchi crater and are transferred to the surface by water through faults. While, metamorphic rock of the Archean–Paleoproterozoic and intrusive rock of the Mesozoic can form hot dry rock geothermal reservoirs with a temperature of 200–400 °C at a depth of 4–7 km under the Tianchi crater and surrounding areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信