提高四氢呋喃脱水能力的金属有机框架集成表面工程聚电解质膜

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Yu-Han Huang , Shu-Hsien Huang , Marwin R. Gallardo , Jeremiah C. Millare , Chi-Lan Li , Kueir-Rarn Lee
{"title":"提高四氢呋喃脱水能力的金属有机框架集成表面工程聚电解质膜","authors":"Yu-Han Huang ,&nbsp;Shu-Hsien Huang ,&nbsp;Marwin R. Gallardo ,&nbsp;Jeremiah C. Millare ,&nbsp;Chi-Lan Li ,&nbsp;Kueir-Rarn Lee","doi":"10.1016/j.jtice.2024.105581","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Enhancing composite membrane performance is crucial for industrial separation processes. Integrating metal-organic frameworks (MOFs) into membranes offers a promising strategy. We introduce a novel approach by integrating HKUST-1 MOF within a polyelectrolyte matrix to improve membrane efficiency.</p></div><div><h3>Methods</h3><p>A layer-by-layer self-assembly technique on a hydrolyzed polyacrylonitrile support integrates HKUST-1 into a polyelectrolyte matrix. Polyethyleneimine (PEI) and polyacrylic acid (PAA) form the polyelectrolyte layer through electrostatic interactions. The incorporation of HKUST-1 within the PEI matrix enhances separation efficiency, particularly in tetrahydrofuran dehydration, with optimal conditions using 100 ppm of HKUST-1 and forming 2 bilayers.</p></div><div><h3>Significant findings</h3><p>Under optimal conditions, the resulting membrane exhibits exceptional performance. It demonstrates a permeation flux of 1442.30 g∙m<sup>−2</sup>∙h<sup>−1</sup>, a water concentration in the permeate of 98.0 wt%, and a separation factor of 440. The modified membrane also shows remarkable stability across varying temperatures (25–55 °C) and tetrahydrofuran concentrations in the feed (10–90 wt%) during long-term testing. These findings highlight the membrane's potential for enhancing separation processes in the chemical industry.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-organic framework integrated surface-engineered polyelectrolyte membranes enhancing tetrahydrofuran dehydration\",\"authors\":\"Yu-Han Huang ,&nbsp;Shu-Hsien Huang ,&nbsp;Marwin R. Gallardo ,&nbsp;Jeremiah C. Millare ,&nbsp;Chi-Lan Li ,&nbsp;Kueir-Rarn Lee\",\"doi\":\"10.1016/j.jtice.2024.105581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Enhancing composite membrane performance is crucial for industrial separation processes. Integrating metal-organic frameworks (MOFs) into membranes offers a promising strategy. We introduce a novel approach by integrating HKUST-1 MOF within a polyelectrolyte matrix to improve membrane efficiency.</p></div><div><h3>Methods</h3><p>A layer-by-layer self-assembly technique on a hydrolyzed polyacrylonitrile support integrates HKUST-1 into a polyelectrolyte matrix. Polyethyleneimine (PEI) and polyacrylic acid (PAA) form the polyelectrolyte layer through electrostatic interactions. The incorporation of HKUST-1 within the PEI matrix enhances separation efficiency, particularly in tetrahydrofuran dehydration, with optimal conditions using 100 ppm of HKUST-1 and forming 2 bilayers.</p></div><div><h3>Significant findings</h3><p>Under optimal conditions, the resulting membrane exhibits exceptional performance. It demonstrates a permeation flux of 1442.30 g∙m<sup>−2</sup>∙h<sup>−1</sup>, a water concentration in the permeate of 98.0 wt%, and a separation factor of 440. The modified membrane also shows remarkable stability across varying temperatures (25–55 °C) and tetrahydrofuran concentrations in the feed (10–90 wt%) during long-term testing. These findings highlight the membrane's potential for enhancing separation processes in the chemical industry.</p></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024002396\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024002396","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景提升复合膜性能对于工业分离过程至关重要。将金属有机框架(MOFs)整合到膜中是一种很有前景的策略。我们介绍了一种将 HKUST-1 MOF 集成到聚电解质基质中以提高膜效率的新方法。方法在水解聚丙烯腈载体上采用逐层自组装技术将 HKUST-1 集成到聚电解质基质中。聚乙烯亚胺(PEI)和聚丙烯酸(PAA)通过静电作用形成聚电解质层。在 PEI 基质中加入 HKUST-1 提高了分离效率,尤其是在四氢呋喃脱水过程中,最佳条件是使用 100 ppm 的 HKUST-1,并形成 2 层双层膜。在最佳条件下,生成的膜表现出卓越的性能,其渗透通量为 1442.30 g∙m-2∙h-1 ,渗透物中的水浓度为 98.0 wt%,分离因子为 440。在长期测试过程中,经过改良的膜在不同温度(25-55 °C)和进料中四氢呋喃浓度(10-90 wt%)下也表现出显著的稳定性。这些发现凸显了该膜在化学工业中增强分离过程的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal-organic framework integrated surface-engineered polyelectrolyte membranes enhancing tetrahydrofuran dehydration

Metal-organic framework integrated surface-engineered polyelectrolyte membranes enhancing tetrahydrofuran dehydration

Background

Enhancing composite membrane performance is crucial for industrial separation processes. Integrating metal-organic frameworks (MOFs) into membranes offers a promising strategy. We introduce a novel approach by integrating HKUST-1 MOF within a polyelectrolyte matrix to improve membrane efficiency.

Methods

A layer-by-layer self-assembly technique on a hydrolyzed polyacrylonitrile support integrates HKUST-1 into a polyelectrolyte matrix. Polyethyleneimine (PEI) and polyacrylic acid (PAA) form the polyelectrolyte layer through electrostatic interactions. The incorporation of HKUST-1 within the PEI matrix enhances separation efficiency, particularly in tetrahydrofuran dehydration, with optimal conditions using 100 ppm of HKUST-1 and forming 2 bilayers.

Significant findings

Under optimal conditions, the resulting membrane exhibits exceptional performance. It demonstrates a permeation flux of 1442.30 g∙m−2∙h−1, a water concentration in the permeate of 98.0 wt%, and a separation factor of 440. The modified membrane also shows remarkable stability across varying temperatures (25–55 °C) and tetrahydrofuran concentrations in the feed (10–90 wt%) during long-term testing. These findings highlight the membrane's potential for enhancing separation processes in the chemical industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信