{"title":"不同运行策略下能源桩群热力学行为的实验和数值研究","authors":"Weibo Yang, Chengrong Wang, Chaoyi Yan, Feng Wang","doi":"10.1016/j.geothermics.2024.103072","DOIUrl":null,"url":null,"abstract":"<div><p>Energy piles are often operated in the form of pile group, and their thermo-mechanical (TM) behaviors are strongly affected by the operational strategies. A model experimental bench of energy pile group with the layout of 3 × 3 was established to investigate the TM behaviors of energy pile group under different start-stop time ratios and pipe connection forms. The test results show that under the current test conditions, raising the start-stop time ratio leads to the increase of heat storage and extraction amount by the pile group, but the temperature of soil around the pile is not well recovered, which in turn results in the rise of deformation degree of pile. For the connection forms of pile buried pipe, the heat storage amount under three kinds of series connection forms is less than that under the conventional parallel connection form. However, the mechanical properties of pile group under the series connection forms are better than those of parallel connection form, which helps to alleviate the pile deformation degree. A 4 × 4 group pile model was developed to further find the effects of two operation strategies, namely, opening partial piles at different locations in winter mode and non-uniform intensity operation of piles in the inner and outer zones, on the TM characteristics of energy pile group. The results showed that opening partial piles increased the axial force of pile in the running piles relative to opening all the piles. Meanwhile, opening eight side piles extracted more heat per month during the heat extraction period relative to opening four internal piles and four corner piles. The four kinds of internal and external zoned non-uniform strength operation modes have different energy storage and thermodynamic properties. The most suitable mode should be selected considering the actual situation.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigations on thermo-mechanical behaviors of energy pile group under different operational strategies\",\"authors\":\"Weibo Yang, Chengrong Wang, Chaoyi Yan, Feng Wang\",\"doi\":\"10.1016/j.geothermics.2024.103072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy piles are often operated in the form of pile group, and their thermo-mechanical (TM) behaviors are strongly affected by the operational strategies. A model experimental bench of energy pile group with the layout of 3 × 3 was established to investigate the TM behaviors of energy pile group under different start-stop time ratios and pipe connection forms. The test results show that under the current test conditions, raising the start-stop time ratio leads to the increase of heat storage and extraction amount by the pile group, but the temperature of soil around the pile is not well recovered, which in turn results in the rise of deformation degree of pile. For the connection forms of pile buried pipe, the heat storage amount under three kinds of series connection forms is less than that under the conventional parallel connection form. However, the mechanical properties of pile group under the series connection forms are better than those of parallel connection form, which helps to alleviate the pile deformation degree. A 4 × 4 group pile model was developed to further find the effects of two operation strategies, namely, opening partial piles at different locations in winter mode and non-uniform intensity operation of piles in the inner and outer zones, on the TM characteristics of energy pile group. The results showed that opening partial piles increased the axial force of pile in the running piles relative to opening all the piles. Meanwhile, opening eight side piles extracted more heat per month during the heat extraction period relative to opening four internal piles and four corner piles. The four kinds of internal and external zoned non-uniform strength operation modes have different energy storage and thermodynamic properties. The most suitable mode should be selected considering the actual situation.</p></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650524001615\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524001615","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental and numerical investigations on thermo-mechanical behaviors of energy pile group under different operational strategies
Energy piles are often operated in the form of pile group, and their thermo-mechanical (TM) behaviors are strongly affected by the operational strategies. A model experimental bench of energy pile group with the layout of 3 × 3 was established to investigate the TM behaviors of energy pile group under different start-stop time ratios and pipe connection forms. The test results show that under the current test conditions, raising the start-stop time ratio leads to the increase of heat storage and extraction amount by the pile group, but the temperature of soil around the pile is not well recovered, which in turn results in the rise of deformation degree of pile. For the connection forms of pile buried pipe, the heat storage amount under three kinds of series connection forms is less than that under the conventional parallel connection form. However, the mechanical properties of pile group under the series connection forms are better than those of parallel connection form, which helps to alleviate the pile deformation degree. A 4 × 4 group pile model was developed to further find the effects of two operation strategies, namely, opening partial piles at different locations in winter mode and non-uniform intensity operation of piles in the inner and outer zones, on the TM characteristics of energy pile group. The results showed that opening partial piles increased the axial force of pile in the running piles relative to opening all the piles. Meanwhile, opening eight side piles extracted more heat per month during the heat extraction period relative to opening four internal piles and four corner piles. The four kinds of internal and external zoned non-uniform strength operation modes have different energy storage and thermodynamic properties. The most suitable mode should be selected considering the actual situation.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.