关于钨酸铁上双金属促进 PMS 活化的新见解:表面羟基的作用

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Guohui Liu , Qiongfang Wang , Lei Dong , Xin Zhang , Min Zhang , Pinhua Rao , Naiyun Gao , Wenjuan Zhang , Jing Deng
{"title":"关于钨酸铁上双金属促进 PMS 活化的新见解:表面羟基的作用","authors":"Guohui Liu ,&nbsp;Qiongfang Wang ,&nbsp;Lei Dong ,&nbsp;Xin Zhang ,&nbsp;Min Zhang ,&nbsp;Pinhua Rao ,&nbsp;Naiyun Gao ,&nbsp;Wenjuan Zhang ,&nbsp;Jing Deng","doi":"10.1016/j.seppur.2024.128147","DOIUrl":null,"url":null,"abstract":"<div><p>The activity of iron oxychloride (FeOCl) in advanced oxidation processes (AOPs) was limited by the redox cycle of Fe(III)/Fe(II). To resolve this problem, FeOCl loading on WS<sub>2</sub> (FW-X) was successfully synthesized with the different ratios of Fe/W (X = 0.5, 1, 2, 3) to active peroxymonosulfate (PMS). Among them, FW-3 displayed excellent catalytic performance which activated 0.5 mM PMS to degrade 97 % thiamphenicol (TAP) in 45 min. FW-3/PMS performed well in a wide pH range (3–10). Besides, the anions (<span><math><mrow><msup><mrow><mi>C</mi><mi>l</mi></mrow><mo>-</mo></msup><mo>,</mo><msubsup><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>3</mn></mrow><mo>-</mo></msubsup><mo>,</mo><msub><mrow><mspace></mspace><mi>H</mi></mrow><mn>2</mn></msub><mi>P</mi><msubsup><mi>O</mi><mrow><mn>4</mn></mrow><mo>-</mo></msubsup><mo>,</mo><mi>H</mi><mi>P</mi><msubsup><mi>O</mi><mrow><mn>4</mn></mrow><mrow><mn>2</mn><mo>-</mo></mrow></msubsup><mspace></mspace><mtext>and</mtext><mspace></mspace><msubsup><mrow><mi>H</mi><mi>C</mi><mi>O</mi></mrow><mrow><mn>3</mn></mrow><mo>-</mo></msubsup><mrow><mo>)</mo></mrow></mrow></math></span> and humic acid inhibited the oxidation of TAP in varying degrees. During the catalytic process, H<sub>2</sub>O and PMS were adsorbed on the surface of FW-3 with the formation of surface hydroxyl groups (Fe–OH) and Fe–HOOSO<sub>3</sub>. Surface hydroxyls as a bridge promoted the electron transfer between O–O bond and Fe sites. Then O–O bond broke to generate reactive oxygen species (ROS, <span><math><mrow><mi>H</mi><msup><mrow><mi>O</mi></mrow><mo>·</mo></msup></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>S</mi><mi>O</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>∙</mo><mo>-</mo></mrow></msubsup></mrow></math></span>, Fe(IV), <span><math><mrow><msubsup><mi>O</mi><mrow><mn>2</mn></mrow><mrow><mo>∙</mo><mo>-</mo></mrow></msubsup></mrow></math></span> and <span><math><mrow><msup><mrow><mspace></mspace></mrow><mn>1</mn></msup><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>), and <span><math><mrow><msubsup><mrow><mi>S</mi><mi>O</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>∙</mo><mo>-</mo></mrow></msubsup></mrow></math></span> was the dominant ROS for the degradation of TAP. Additionally, WS<sub>2</sub> as a co-catalyst broke the limitation of the iron redox cycle. Under the attack of these ROS, TAP produced eighteen intermediates through four possible degradation pathways. According to ecotoxicity assessment, toxicity of some intermediates produced from path of S-C bond breakage was less harmful than TAP. After three consecutive cycles, FW-3 maintained outstanding catalytic performance. Additionally, FW-3/PMS possessed a good non-selectivity that could remove different contaminants. In a word, this paper proved the potential of FW-3/PMS in practical wastewater remediation.</p></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"352 ","pages":"Article 128147"},"PeriodicalIF":9.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insights into dual metals boost PMS activation over iron tungstate: The role of surface hydroxyl\",\"authors\":\"Guohui Liu ,&nbsp;Qiongfang Wang ,&nbsp;Lei Dong ,&nbsp;Xin Zhang ,&nbsp;Min Zhang ,&nbsp;Pinhua Rao ,&nbsp;Naiyun Gao ,&nbsp;Wenjuan Zhang ,&nbsp;Jing Deng\",\"doi\":\"10.1016/j.seppur.2024.128147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The activity of iron oxychloride (FeOCl) in advanced oxidation processes (AOPs) was limited by the redox cycle of Fe(III)/Fe(II). To resolve this problem, FeOCl loading on WS<sub>2</sub> (FW-X) was successfully synthesized with the different ratios of Fe/W (X = 0.5, 1, 2, 3) to active peroxymonosulfate (PMS). Among them, FW-3 displayed excellent catalytic performance which activated 0.5 mM PMS to degrade 97 % thiamphenicol (TAP) in 45 min. FW-3/PMS performed well in a wide pH range (3–10). Besides, the anions (<span><math><mrow><msup><mrow><mi>C</mi><mi>l</mi></mrow><mo>-</mo></msup><mo>,</mo><msubsup><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>3</mn></mrow><mo>-</mo></msubsup><mo>,</mo><msub><mrow><mspace></mspace><mi>H</mi></mrow><mn>2</mn></msub><mi>P</mi><msubsup><mi>O</mi><mrow><mn>4</mn></mrow><mo>-</mo></msubsup><mo>,</mo><mi>H</mi><mi>P</mi><msubsup><mi>O</mi><mrow><mn>4</mn></mrow><mrow><mn>2</mn><mo>-</mo></mrow></msubsup><mspace></mspace><mtext>and</mtext><mspace></mspace><msubsup><mrow><mi>H</mi><mi>C</mi><mi>O</mi></mrow><mrow><mn>3</mn></mrow><mo>-</mo></msubsup><mrow><mo>)</mo></mrow></mrow></math></span> and humic acid inhibited the oxidation of TAP in varying degrees. During the catalytic process, H<sub>2</sub>O and PMS were adsorbed on the surface of FW-3 with the formation of surface hydroxyl groups (Fe–OH) and Fe–HOOSO<sub>3</sub>. Surface hydroxyls as a bridge promoted the electron transfer between O–O bond and Fe sites. Then O–O bond broke to generate reactive oxygen species (ROS, <span><math><mrow><mi>H</mi><msup><mrow><mi>O</mi></mrow><mo>·</mo></msup></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>S</mi><mi>O</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>∙</mo><mo>-</mo></mrow></msubsup></mrow></math></span>, Fe(IV), <span><math><mrow><msubsup><mi>O</mi><mrow><mn>2</mn></mrow><mrow><mo>∙</mo><mo>-</mo></mrow></msubsup></mrow></math></span> and <span><math><mrow><msup><mrow><mspace></mspace></mrow><mn>1</mn></msup><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>), and <span><math><mrow><msubsup><mrow><mi>S</mi><mi>O</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>∙</mo><mo>-</mo></mrow></msubsup></mrow></math></span> was the dominant ROS for the degradation of TAP. Additionally, WS<sub>2</sub> as a co-catalyst broke the limitation of the iron redox cycle. Under the attack of these ROS, TAP produced eighteen intermediates through four possible degradation pathways. According to ecotoxicity assessment, toxicity of some intermediates produced from path of S-C bond breakage was less harmful than TAP. After three consecutive cycles, FW-3 maintained outstanding catalytic performance. Additionally, FW-3/PMS possessed a good non-selectivity that could remove different contaminants. In a word, this paper proved the potential of FW-3/PMS in practical wastewater remediation.</p></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"352 \",\"pages\":\"Article 128147\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586624018860\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624018860","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧氯化铁(FeOCl)在高级氧化过程(AOPs)中的活性受到铁(III)/铁(II)氧化还原循环的限制。为解决这一问题,成功合成了在 WS2 上负载 FeOCl 的 FW-X,Fe/W(X = 0.5、1、2、3)与活性过一硫酸盐(PMS)的比例各不相同。其中,FW-3 表现出优异的催化性能,它能在 45 分钟内激活 0.5 mM PMS,降解 97% 的噻吩霉素(TAP)。FW-3/PMS 在较宽的 pH 值范围(3-10)内均表现良好。此外,阴离子(Cl-、NO3-、H2PO4-、HPO42 和 HCO3-)和腐殖酸也对 TAP 的氧化作用有不同程度的抑制。在催化过程中,FW-3 表面吸附了 H2O 和 PMS,并形成了表面羟基(Fe-OH)和 Fe-HOOSO3。表面羟基作为桥梁促进了 O-O 键和 Fe 位点之间的电子转移。然后,O-O 键断裂产生活性氧(ROS,HO-、SO4∙-、Fe(IV)、O2∙- 和 1O2),其中 SO4∙- 是降解 TAP 的主要 ROS。此外,WS2 作为辅助催化剂打破了铁氧化还原循环的限制。在这些 ROS 的作用下,TAP 通过四种可能的降解途径产生了十八种中间产物。根据生态毒性评估,S-C 键断裂途径产生的一些中间产物的毒性低于 TAP。在连续三个循环后,FW-3 保持了出色的催化性能。此外,FW-3/PMS 还具有良好的非选择性,可以去除不同的污染物。总之,本文证明了 FW-3/PMS 在实际废水修复中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New insights into dual metals boost PMS activation over iron tungstate: The role of surface hydroxyl

New insights into dual metals boost PMS activation over iron tungstate: The role of surface hydroxyl

The activity of iron oxychloride (FeOCl) in advanced oxidation processes (AOPs) was limited by the redox cycle of Fe(III)/Fe(II). To resolve this problem, FeOCl loading on WS2 (FW-X) was successfully synthesized with the different ratios of Fe/W (X = 0.5, 1, 2, 3) to active peroxymonosulfate (PMS). Among them, FW-3 displayed excellent catalytic performance which activated 0.5 mM PMS to degrade 97 % thiamphenicol (TAP) in 45 min. FW-3/PMS performed well in a wide pH range (3–10). Besides, the anions (Cl-,NO3-,H2PO4-,HPO42-andHCO3-) and humic acid inhibited the oxidation of TAP in varying degrees. During the catalytic process, H2O and PMS were adsorbed on the surface of FW-3 with the formation of surface hydroxyl groups (Fe–OH) and Fe–HOOSO3. Surface hydroxyls as a bridge promoted the electron transfer between O–O bond and Fe sites. Then O–O bond broke to generate reactive oxygen species (ROS, HO·, SO4-, Fe(IV), O2- and 1O2), and SO4- was the dominant ROS for the degradation of TAP. Additionally, WS2 as a co-catalyst broke the limitation of the iron redox cycle. Under the attack of these ROS, TAP produced eighteen intermediates through four possible degradation pathways. According to ecotoxicity assessment, toxicity of some intermediates produced from path of S-C bond breakage was less harmful than TAP. After three consecutive cycles, FW-3 maintained outstanding catalytic performance. Additionally, FW-3/PMS possessed a good non-selectivity that could remove different contaminants. In a word, this paper proved the potential of FW-3/PMS in practical wastewater remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信