Csongor Beke , Gergely Kál Csáji , Péter Csikvári , Sára Pituk
{"title":"置换图特多项式","authors":"Csongor Beke , Gergely Kál Csáji , Péter Csikvári , Sára Pituk","doi":"10.1016/j.ejc.2024.104003","DOIUrl":null,"url":null,"abstract":"<div><p>The classical Tutte polynomial is a two-variate polynomial <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to graphs or more generally, matroids. In this paper, we introduce a polynomial <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to a bipartite graph <span><math><mi>H</mi></math></span> that we call the permutation Tutte polynomial of the graph <span><math><mi>H</mi></math></span>. It turns out that <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> share many properties, and the permutation Tutte polynomial serves as a tool to study the classical Tutte polynomial. We discuss the analogues of Brylawsi’s identities and Conde–Merino–Welsh type inequalities. In particular, we will show that if <span><math><mi>H</mi></math></span> does not contain isolated vertices, then <span><span><span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span>which gives a short proof of the analogous result of Jackson: <span><span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span></span></span>\nfor graphs without loops and bridges. We also give improvement on the constant 3 in this statement by showing that one can replace it with 2.9243.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permutation Tutte polynomial\",\"authors\":\"Csongor Beke , Gergely Kál Csáji , Péter Csikvári , Sára Pituk\",\"doi\":\"10.1016/j.ejc.2024.104003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classical Tutte polynomial is a two-variate polynomial <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to graphs or more generally, matroids. In this paper, we introduce a polynomial <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to a bipartite graph <span><math><mi>H</mi></math></span> that we call the permutation Tutte polynomial of the graph <span><math><mi>H</mi></math></span>. It turns out that <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> share many properties, and the permutation Tutte polynomial serves as a tool to study the classical Tutte polynomial. We discuss the analogues of Brylawsi’s identities and Conde–Merino–Welsh type inequalities. In particular, we will show that if <span><math><mi>H</mi></math></span> does not contain isolated vertices, then <span><span><span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span>which gives a short proof of the analogous result of Jackson: <span><span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span></span></span>\\nfor graphs without loops and bridges. We also give improvement on the constant 3 in this statement by showing that one can replace it with 2.9243.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982400088X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982400088X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
经典的 Tutte 多项式是与图或更广义的矩阵相关联的双变量多项式 TG(x,y)。在本文中,我们引入了一个与双向图 H 相关联的多项式 T˜H(x,y),我们称之为图 H 的置换 Tutte 多项式。我们将讨论 Brylawsi 同余式和 Conde-Merino-Welsh 型不等式的类比。特别是,我们将证明,如果 H 不包含孤立顶点,那么 T˜H(3,0)T˜H(0,3)≥T˜H(1,1)2,这给出了杰克逊类似结果的简短证明:对于没有循环和桥的图,TG(3,0)TG(0,3)≥TG(1,1)2。我们还通过证明可以用 2.9243 代替常数 3 来改进这一结论。
The classical Tutte polynomial is a two-variate polynomial associated to graphs or more generally, matroids. In this paper, we introduce a polynomial associated to a bipartite graph that we call the permutation Tutte polynomial of the graph . It turns out that and share many properties, and the permutation Tutte polynomial serves as a tool to study the classical Tutte polynomial. We discuss the analogues of Brylawsi’s identities and Conde–Merino–Welsh type inequalities. In particular, we will show that if does not contain isolated vertices, then which gives a short proof of the analogous result of Jackson:
for graphs without loops and bridges. We also give improvement on the constant 3 in this statement by showing that one can replace it with 2.9243.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.