置换图特多项式

IF 1 3区 数学 Q1 MATHEMATICS
Csongor Beke , Gergely Kál Csáji , Péter Csikvári , Sára Pituk
{"title":"置换图特多项式","authors":"Csongor Beke ,&nbsp;Gergely Kál Csáji ,&nbsp;Péter Csikvári ,&nbsp;Sára Pituk","doi":"10.1016/j.ejc.2024.104003","DOIUrl":null,"url":null,"abstract":"<div><p>The classical Tutte polynomial is a two-variate polynomial <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to graphs or more generally, matroids. In this paper, we introduce a polynomial <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to a bipartite graph <span><math><mi>H</mi></math></span> that we call the permutation Tutte polynomial of the graph <span><math><mi>H</mi></math></span>. It turns out that <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> share many properties, and the permutation Tutte polynomial serves as a tool to study the classical Tutte polynomial. We discuss the analogues of Brylawsi’s identities and Conde–Merino–Welsh type inequalities. In particular, we will show that if <span><math><mi>H</mi></math></span> does not contain isolated vertices, then <span><span><span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span>which gives a short proof of the analogous result of Jackson: <span><span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span></span></span>\nfor graphs without loops and bridges. We also give improvement on the constant 3 in this statement by showing that one can replace it with 2.9243.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permutation Tutte polynomial\",\"authors\":\"Csongor Beke ,&nbsp;Gergely Kál Csáji ,&nbsp;Péter Csikvári ,&nbsp;Sára Pituk\",\"doi\":\"10.1016/j.ejc.2024.104003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classical Tutte polynomial is a two-variate polynomial <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to graphs or more generally, matroids. In this paper, we introduce a polynomial <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> associated to a bipartite graph <span><math><mi>H</mi></math></span> that we call the permutation Tutte polynomial of the graph <span><math><mi>H</mi></math></span>. It turns out that <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> share many properties, and the permutation Tutte polynomial serves as a tool to study the classical Tutte polynomial. We discuss the analogues of Brylawsi’s identities and Conde–Merino–Welsh type inequalities. In particular, we will show that if <span><math><mi>H</mi></math></span> does not contain isolated vertices, then <span><span><span><math><mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>H</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span>which gives a short proof of the analogous result of Jackson: <span><span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>≥</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span></span></span>\\nfor graphs without loops and bridges. We also give improvement on the constant 3 in this statement by showing that one can replace it with 2.9243.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982400088X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982400088X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

经典的 Tutte 多项式是与图或更广义的矩阵相关联的双变量多项式 TG(x,y)。在本文中,我们引入了一个与双向图 H 相关联的多项式 T˜H(x,y),我们称之为图 H 的置换 Tutte 多项式。我们将讨论 Brylawsi 同余式和 Conde-Merino-Welsh 型不等式的类比。特别是,我们将证明,如果 H 不包含孤立顶点,那么 T˜H(3,0)T˜H(0,3)≥T˜H(1,1)2,这给出了杰克逊类似结果的简短证明:对于没有循环和桥的图,TG(3,0)TG(0,3)≥TG(1,1)2。我们还通过证明可以用 2.9243 代替常数 3 来改进这一结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Permutation Tutte polynomial

The classical Tutte polynomial is a two-variate polynomial TG(x,y) associated to graphs or more generally, matroids. In this paper, we introduce a polynomial T˜H(x,y) associated to a bipartite graph H that we call the permutation Tutte polynomial of the graph H. It turns out that TG(x,y) and T˜H(x,y) share many properties, and the permutation Tutte polynomial serves as a tool to study the classical Tutte polynomial. We discuss the analogues of Brylawsi’s identities and Conde–Merino–Welsh type inequalities. In particular, we will show that if H does not contain isolated vertices, then T˜H(3,0)T˜H(0,3)T˜H(1,1)2,which gives a short proof of the analogous result of Jackson: TG(3,0)TG(0,3)TG(1,1)2 for graphs without loops and bridges. We also give improvement on the constant 3 in this statement by showing that one can replace it with 2.9243.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信