{"title":"表观序列的重复阈值","authors":"L’ubomíra Dvořáková, Edita Pelantová","doi":"10.1016/j.ejc.2024.104001","DOIUrl":null,"url":null,"abstract":"<div><p>The repetition threshold of a class <span><math><mi>C</mi></math></span> of infinite <span><math><mi>d</mi></math></span>-ary sequences is the smallest real number <span><math><mi>r</mi></math></span> such that in the class <span><math><mi>C</mi></math></span> there exists a sequence that avoids <span><math><mi>e</mi></math></span>-powers for all <span><math><mrow><mi>e</mi><mo>></mo><mi>r</mi></mrow></math></span>. This notion was introduced by Dejean in 1972 for the class of all sequences over a <span><math><mi>d</mi></math></span>-letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every <span><math><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences – one of the possible generalizations of Sturmian sequences. Here, we focus on the class of <span><math><mi>d</mi></math></span>-ary episturmian sequences – another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the <span><math><mi>d</mi></math></span>-bonacci sequence and its value equals <span><math><mrow><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>, where <span><math><mrow><mi>t</mi><mo>></mo><mn>1</mn></mrow></math></span> is the unique positive root of the polynomial <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mo>⋯</mo><mo>−</mo><mi>x</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The repetition threshold of episturmian sequences\",\"authors\":\"L’ubomíra Dvořáková, Edita Pelantová\",\"doi\":\"10.1016/j.ejc.2024.104001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The repetition threshold of a class <span><math><mi>C</mi></math></span> of infinite <span><math><mi>d</mi></math></span>-ary sequences is the smallest real number <span><math><mi>r</mi></math></span> such that in the class <span><math><mi>C</mi></math></span> there exists a sequence that avoids <span><math><mi>e</mi></math></span>-powers for all <span><math><mrow><mi>e</mi><mo>></mo><mi>r</mi></mrow></math></span>. This notion was introduced by Dejean in 1972 for the class of all sequences over a <span><math><mi>d</mi></math></span>-letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every <span><math><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences – one of the possible generalizations of Sturmian sequences. Here, we focus on the class of <span><math><mi>d</mi></math></span>-ary episturmian sequences – another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the <span><math><mi>d</mi></math></span>-bonacci sequence and its value equals <span><math><mrow><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>, where <span><math><mrow><mi>t</mi><mo>></mo><mn>1</mn></mrow></math></span> is the unique positive root of the polynomial <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mo>⋯</mo><mo>−</mo><mi>x</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000866\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The repetition threshold of a class of infinite -ary sequences is the smallest real number such that in the class there exists a sequence that avoids -powers for all . This notion was introduced by Dejean in 1972 for the class of all sequences over a -letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every . The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences – one of the possible generalizations of Sturmian sequences. Here, we focus on the class of -ary episturmian sequences – another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the -bonacci sequence and its value equals , where is the unique positive root of the polynomial .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.