带箭头的格尔芬-采特林模式的(-1)枚举

IF 1 3区 数学 Q1 MATHEMATICS
Ilse Fischer, Florian Schreier-Aigner
{"title":"带箭头的格尔芬-采特林模式的(-1)枚举","authors":"Ilse Fischer,&nbsp;Florian Schreier-Aigner","doi":"10.1016/j.ejc.2024.103979","DOIUrl":null,"url":null,"abstract":"<div><p>Arrowed Gelfand–Tsetlin patterns have recently been introduced to study alternating sign matrices. In this paper, we show that a <span><math><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-enumeration of arrowed Gelfand–Tsetlin patterns can be expressed by a simple product formula. The numbers are up to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> a one-parameter generalization of the numbers <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mfrac><mrow><mrow><mo>(</mo><mn>4</mn><mi>j</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>!</mo></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mi>j</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>!</mo></mrow></mfrac></mrow></math></span> that appear in recent work of Di Francesco. A second result concerns the <span><math><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-enumeration of arrowed Gelfand–Tsetlin patterns when excluding double-arrows as decoration in which case we also obtain a simple product formula. We are also able to provide signless interpretations of our results. The proofs of the enumeration formulas are based on a recent Littlewood-type identity, which allows us to reduce the problem to the evaluations of two determinants. The evaluations are accomplished by means of the LU-decompositions of the underlying matrices, and an extension of Sister Celine’s algorithm as well as creative telescoping to evaluate certain triple sums. In particular, we use implementations of such algorithms by Koutschan, and by Wegschaider and Riese.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000647/pdfft?md5=55104cbe526326423121d99e38e209de&pid=1-s2.0-S0195669824000647-main.pdf","citationCount":"0","resultStr":"{\"title\":\"(−1)-enumerations of arrowed Gelfand–Tsetlin patterns\",\"authors\":\"Ilse Fischer,&nbsp;Florian Schreier-Aigner\",\"doi\":\"10.1016/j.ejc.2024.103979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arrowed Gelfand–Tsetlin patterns have recently been introduced to study alternating sign matrices. In this paper, we show that a <span><math><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-enumeration of arrowed Gelfand–Tsetlin patterns can be expressed by a simple product formula. The numbers are up to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> a one-parameter generalization of the numbers <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mfrac><mrow><mrow><mo>(</mo><mn>4</mn><mi>j</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>!</mo></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mi>j</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>!</mo></mrow></mfrac></mrow></math></span> that appear in recent work of Di Francesco. A second result concerns the <span><math><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-enumeration of arrowed Gelfand–Tsetlin patterns when excluding double-arrows as decoration in which case we also obtain a simple product formula. We are also able to provide signless interpretations of our results. The proofs of the enumeration formulas are based on a recent Littlewood-type identity, which allows us to reduce the problem to the evaluations of two determinants. The evaluations are accomplished by means of the LU-decompositions of the underlying matrices, and an extension of Sister Celine’s algorithm as well as creative telescoping to evaluate certain triple sums. In particular, we use implementations of such algorithms by Koutschan, and by Wegschaider and Riese.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000647/pdfft?md5=55104cbe526326423121d99e38e209de&pid=1-s2.0-S0195669824000647-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000647\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000647","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们引入了箭头格尔凡-采林模式来研究交替符号矩阵。在本文中,我们证明了箭头格尔范-策林模式的 (-1)-enumeration 可以用一个简单的乘积公式来表示。这些数字是迪-弗朗西斯科(Di Francesco)近期研究中出现的数字 2n(n-1)/2∏j=0n-1(4j+2)!(n+2j+1)!的单参数广义化。第二个结果涉及在排除双箭头作为装饰的情况下,(-1)-枚举带箭头的格尔芬-采林图案,在这种情况下,我们也得到了一个简单的乘积公式。我们还能为我们的结果提供无符号解释。枚举公式的证明基于一个最新的利特尔伍德式特征,它使我们能够将问题简化为两个行列式的求值。我们通过底层矩阵的 LU 分解、西斯特-席林算法的扩展以及创造性的伸缩来计算某些三重和。我们特别使用了 Koutschan 以及 Wegschaider 和 Riese 对此类算法的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(−1)-enumerations of arrowed Gelfand–Tsetlin patterns

Arrowed Gelfand–Tsetlin patterns have recently been introduced to study alternating sign matrices. In this paper, we show that a (1)-enumeration of arrowed Gelfand–Tsetlin patterns can be expressed by a simple product formula. The numbers are up to 2n a one-parameter generalization of the numbers 2n(n1)/2j=0n1(4j+2)!(n+2j+1)! that appear in recent work of Di Francesco. A second result concerns the (1)-enumeration of arrowed Gelfand–Tsetlin patterns when excluding double-arrows as decoration in which case we also obtain a simple product formula. We are also able to provide signless interpretations of our results. The proofs of the enumeration formulas are based on a recent Littlewood-type identity, which allows us to reduce the problem to the evaluations of two determinants. The evaluations are accomplished by means of the LU-decompositions of the underlying matrices, and an extension of Sister Celine’s algorithm as well as creative telescoping to evaluate certain triple sums. In particular, we use implementations of such algorithms by Koutschan, and by Wegschaider and Riese.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信