中国广东省陆河县降雨诱发山体滑坡灾害绘图的自动化机器学习

IF 4.6 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
China Geology Pub Date : 2024-04-25 DOI:10.31035/cg2024064
Tao Li , Chen-chen Xie , Chong Xu , Wen-wen Qi , Yuan-dong Huang , Lei Li
{"title":"中国广东省陆河县降雨诱发山体滑坡灾害绘图的自动化机器学习","authors":"Tao Li ,&nbsp;Chen-chen Xie ,&nbsp;Chong Xu ,&nbsp;Wen-wen Qi ,&nbsp;Yuan-dong Huang ,&nbsp;Lei Li","doi":"10.31035/cg2024064","DOIUrl":null,"url":null,"abstract":"<div><p>Landslide hazard mapping is essential for regional landslide hazard management. The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County, China based on an automated machine learning framework (AutoGluon). A total of 2241 landslides were identified from satellite images before and after the rainfall event, and 10 impact factors including elevation, slope, aspect, normalized difference vegetation index (NDVI), topographic wetness index (TWI), lithology, land cover, distance to roads, distance to rivers, and rainfall were selected as indicators. The WeightedEnsemble model, which is an ensemble of 13 basic machine learning models weighted together, was used to output the landslide hazard assessment results. The results indicate that landslides mainly occurred in the central part of the study area, especially in Hetian and Shanghu. Totally 102.44 s were spent to train all the models, and the ensemble model WeightedEnsemble has an Area Under the Curve (AUC) value of 92.36% in the test set. In addition, 14.95% of the study area was determined to be at very high hazard, with a landslide density of 12.02 per square kilometer. This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.</p></div>","PeriodicalId":45329,"journal":{"name":"China Geology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096519224001125/pdfft?md5=e950175d353294f06218ffdbbc16a99d&pid=1-s2.0-S2096519224001125-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China\",\"authors\":\"Tao Li ,&nbsp;Chen-chen Xie ,&nbsp;Chong Xu ,&nbsp;Wen-wen Qi ,&nbsp;Yuan-dong Huang ,&nbsp;Lei Li\",\"doi\":\"10.31035/cg2024064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landslide hazard mapping is essential for regional landslide hazard management. The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County, China based on an automated machine learning framework (AutoGluon). A total of 2241 landslides were identified from satellite images before and after the rainfall event, and 10 impact factors including elevation, slope, aspect, normalized difference vegetation index (NDVI), topographic wetness index (TWI), lithology, land cover, distance to roads, distance to rivers, and rainfall were selected as indicators. The WeightedEnsemble model, which is an ensemble of 13 basic machine learning models weighted together, was used to output the landslide hazard assessment results. The results indicate that landslides mainly occurred in the central part of the study area, especially in Hetian and Shanghu. Totally 102.44 s were spent to train all the models, and the ensemble model WeightedEnsemble has an Area Under the Curve (AUC) value of 92.36% in the test set. In addition, 14.95% of the study area was determined to be at very high hazard, with a landslide density of 12.02 per square kilometer. This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.</p></div>\",\"PeriodicalId\":45329,\"journal\":{\"name\":\"China Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096519224001125/pdfft?md5=e950175d353294f06218ffdbbc16a99d&pid=1-s2.0-S2096519224001125-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096519224001125\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096519224001125","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

滑坡灾害绘图对于区域滑坡灾害管理至关重要。本研究的主要目的是基于自动机器学习框架(AutoGluon)构建中国陆河县降雨诱发的滑坡灾害图。通过降雨前后的卫星图像共识别出 2241 个滑坡点,并选取了海拔、坡度、坡向、归一化差异植被指数(NDVI)、地形湿润指数(TWI)、岩性、土地覆盖、道路距离、河流距离和降雨量等 10 个影响因子作为指标。使用加权集合模型(WeightedEnsemble model)输出滑坡危害评估结果,该模型由 13 个基本机器学习模型加权集合而成。结果表明,滑坡主要发生在研究区域的中部,尤其是河田和尚湖。所有模型的训练耗时共计 102.44 秒,在测试集中,集合模型 WeightedEnsemble 的曲线下面积(AUC)值为 92.36%。此外,14.95% 的研究区域被确定为极高危险区,滑坡密度为每平方公里 12.02 次。这项研究对陆河县地质灾害防治和土地利用规划具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China

Landslide hazard mapping is essential for regional landslide hazard management. The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County, China based on an automated machine learning framework (AutoGluon). A total of 2241 landslides were identified from satellite images before and after the rainfall event, and 10 impact factors including elevation, slope, aspect, normalized difference vegetation index (NDVI), topographic wetness index (TWI), lithology, land cover, distance to roads, distance to rivers, and rainfall were selected as indicators. The WeightedEnsemble model, which is an ensemble of 13 basic machine learning models weighted together, was used to output the landslide hazard assessment results. The results indicate that landslides mainly occurred in the central part of the study area, especially in Hetian and Shanghu. Totally 102.44 s were spent to train all the models, and the ensemble model WeightedEnsemble has an Area Under the Curve (AUC) value of 92.36% in the test set. In addition, 14.95% of the study area was determined to be at very high hazard, with a landslide density of 12.02 per square kilometer. This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
China Geology
China Geology GEOLOGY-
CiteScore
7.80
自引率
11.10%
发文量
275
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信