基于历史案例多源数据协作分析的潜在山体滑坡径流预测

IF 4.6 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
China Geology Pub Date : 2024-04-25 DOI:10.31035/cg2023138
Jun Sun , Yu Zhuang , Ai-guo Xing
{"title":"基于历史案例多源数据协作分析的潜在山体滑坡径流预测","authors":"Jun Sun ,&nbsp;Yu Zhuang ,&nbsp;Ai-guo Xing","doi":"10.31035/cg2023138","DOIUrl":null,"url":null,"abstract":"<div><p>Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance, high mobility and strong destructive power. Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters. This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events. Specifically, for the historical landslide cases, the landslide-induced seismic signal, geophysical surveys, and possible <em>in-situ</em> drone/phone videos (multi-source data collaboration) can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical (rheological) parameters. Subsequently, the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events. Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou, China gives reasonable results in comparison to the field observations. The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region (2019 Shuicheng landslide). The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.</p></div>","PeriodicalId":45329,"journal":{"name":"China Geology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096519224001083/pdfft?md5=0e9e22cba04d49b82348fdc655e241d2&pid=1-s2.0-S2096519224001083-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases\",\"authors\":\"Jun Sun ,&nbsp;Yu Zhuang ,&nbsp;Ai-guo Xing\",\"doi\":\"10.31035/cg2023138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance, high mobility and strong destructive power. Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters. This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events. Specifically, for the historical landslide cases, the landslide-induced seismic signal, geophysical surveys, and possible <em>in-situ</em> drone/phone videos (multi-source data collaboration) can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical (rheological) parameters. Subsequently, the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events. Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou, China gives reasonable results in comparison to the field observations. The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region (2019 Shuicheng landslide). The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.</p></div>\",\"PeriodicalId\":45329,\"journal\":{\"name\":\"China Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096519224001083/pdfft?md5=0e9e22cba04d49b82348fdc655e241d2&pid=1-s2.0-S2096519224001083-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096519224001083\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096519224001083","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

长滑坡涉及巨大的能量,由于其移动距离长、流动性大、破坏力强,因此具有极大的危险性。数值方法已被广泛用于预测滑坡滑出,但如何确定可靠的数值参数仍是一个基本问题。本研究通过多源数据协作和对历史滑坡事件的数值分析,提出了一种预测潜在滑坡滑出的框架。具体而言,对于历史滑坡案例,滑坡引发的地震信号、地球物理勘测以及可能的现场无人机/手机视频(多源数据协作)可以从滑坡动力学和沉积特征方面验证数值结果,并帮助校准数值(流变)参数。随后,校准后的数值参数可用于数值预测该地区潜在滑坡的滑出,其地质环境与所记录的事件类似。在中国贵州 2020 年嘉善营滑坡中应用滑出预测方法,与现场观测结果相比,结果合理。数值参数是根据该地区历史案例(2019 年水城滑坡)的多源数据协作分析确定的。所提出的滑坡径流预测框架对全球山区滑坡风险评估和减灾具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases

Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance, high mobility and strong destructive power. Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters. This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events. Specifically, for the historical landslide cases, the landslide-induced seismic signal, geophysical surveys, and possible in-situ drone/phone videos (multi-source data collaboration) can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical (rheological) parameters. Subsequently, the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events. Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou, China gives reasonable results in comparison to the field observations. The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region (2019 Shuicheng landslide). The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
China Geology
China Geology GEOLOGY-
CiteScore
7.80
自引率
11.10%
发文量
275
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信