{"title":"利用石油焦衍生的还原氧化石墨烯定制硫化锡电催化剂,实现整体水分离","authors":"Chandan Kumar , Thangjam Ibomcha Singh , Pinky Saharan , Ashish Gupta , Jogender Singh , Mandeep Singh , S.R. Dhakate","doi":"10.1016/j.flatc.2024.100689","DOIUrl":null,"url":null,"abstract":"<div><p>Metal chalcogenides like Tin sulfide (SnS<sub>2</sub>) presents as viable alternative electrocatalysts for alkaline water splitting (AWS) due to their huge abundance, stability, and environment friendly nature. However, insufficient exposed active sites and poor conductivity severely impede its large-scale applications. In this work, an in-situ hybridization of hexagonal SnS<sub>2</sub> with intercalation of reduced graphene oxide nanosheets (TS-rGOx) overcomes the problem of SnS<sub>2</sub> stacking. It further enhances the interlayer spacing thereby boosting the number of active sites. The resulting TS-rGOx exhibited excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities demanding low overpotential of 313 mV and 196.2 mV at 20 mA/cm<sup>2</sup> with long term durability upto 60 h, which can be attributed to enhanced interlayer spacing of SnS<sub>2</sub>, abundant active sites and higher conductivity resulting from the in-situ hybridization and intercalation of rGO nanosheets. This work opens a prospect towards the design and application of efficient SnS<sub>2</sub> based heterostructured<!--> <!-->electrocatalyst<!--> <!-->for AWS.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"46 ","pages":"Article 100689"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring tin sulfide electrocatalyst with petroleum coke derived reduced graphene oxide for overall water splitting\",\"authors\":\"Chandan Kumar , Thangjam Ibomcha Singh , Pinky Saharan , Ashish Gupta , Jogender Singh , Mandeep Singh , S.R. Dhakate\",\"doi\":\"10.1016/j.flatc.2024.100689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal chalcogenides like Tin sulfide (SnS<sub>2</sub>) presents as viable alternative electrocatalysts for alkaline water splitting (AWS) due to their huge abundance, stability, and environment friendly nature. However, insufficient exposed active sites and poor conductivity severely impede its large-scale applications. In this work, an in-situ hybridization of hexagonal SnS<sub>2</sub> with intercalation of reduced graphene oxide nanosheets (TS-rGOx) overcomes the problem of SnS<sub>2</sub> stacking. It further enhances the interlayer spacing thereby boosting the number of active sites. The resulting TS-rGOx exhibited excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities demanding low overpotential of 313 mV and 196.2 mV at 20 mA/cm<sup>2</sup> with long term durability upto 60 h, which can be attributed to enhanced interlayer spacing of SnS<sub>2</sub>, abundant active sites and higher conductivity resulting from the in-situ hybridization and intercalation of rGO nanosheets. This work opens a prospect towards the design and application of efficient SnS<sub>2</sub> based heterostructured<!--> <!-->electrocatalyst<!--> <!-->for AWS.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"46 \",\"pages\":\"Article 100689\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724000837\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000837","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tailoring tin sulfide electrocatalyst with petroleum coke derived reduced graphene oxide for overall water splitting
Metal chalcogenides like Tin sulfide (SnS2) presents as viable alternative electrocatalysts for alkaline water splitting (AWS) due to their huge abundance, stability, and environment friendly nature. However, insufficient exposed active sites and poor conductivity severely impede its large-scale applications. In this work, an in-situ hybridization of hexagonal SnS2 with intercalation of reduced graphene oxide nanosheets (TS-rGOx) overcomes the problem of SnS2 stacking. It further enhances the interlayer spacing thereby boosting the number of active sites. The resulting TS-rGOx exhibited excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities demanding low overpotential of 313 mV and 196.2 mV at 20 mA/cm2 with long term durability upto 60 h, which can be attributed to enhanced interlayer spacing of SnS2, abundant active sites and higher conductivity resulting from the in-situ hybridization and intercalation of rGO nanosheets. This work opens a prospect towards the design and application of efficient SnS2 based heterostructured electrocatalyst for AWS.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)