优化基于核磁共振片段的膜蛋白靶点药物筛选

IF 3.5 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Geoffrey C. Li , Manuel A. Castro , Thilini Ukwaththage, Charles R. Sanders
{"title":"优化基于核磁共振片段的膜蛋白靶点药物筛选","authors":"Geoffrey C. Li ,&nbsp;Manuel A. Castro ,&nbsp;Thilini Ukwaththage,&nbsp;Charles R. Sanders","doi":"10.1016/j.yjsbx.2024.100100","DOIUrl":null,"url":null,"abstract":"<div><p>NMR spectroscopy has played a pivotal role in fragment-based drug discovery by coupling detection of weak ligand-target binding with structural mapping of the binding site. Fragment-based screening by NMR has been successfully applied to many soluble protein targets, but only to a limited number of membrane proteins, despite the fact that many drug targets are membrane proteins. This is partly because of difficulties preparing membrane proteins for NMR—especially human membrane proteins—and because of the inherent complexity associated with solution NMR spectroscopy on membrane protein samples, which require the inclusion of membrane-mimetic agents such as micelles, nanodiscs, or bicelles. Here, we developed a generalizable protocol for fragment-based screening of membrane proteins using NMR. We employed two human membrane protein targets, both in fully protonated detergent micelles: the single-pass C-terminal domain of the amyloid precursor protein, C99, and the tetraspan peripheral myelin protein 22 (PMP22). For both we determined the optimal NMR acquisition parameters, protein concentration, protein-to-micelle ratio, and upper limit to the concentration of D<sub>6</sub>-DMSO in screening samples. Furthermore, we conducted preliminary screens of a plate-format molecular fragment mixture library using our optimized conditions and were able to identify hit compounds that selectively bound to the respective target proteins. It is hoped that the approaches presented here will be useful in complementing existing methods for discovering lead compounds that target membrane proteins.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590152424000059/pdfft?md5=39c55f7648d09ecd7660ace75e9b5e22&pid=1-s2.0-S2590152424000059-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing NMR fragment-based drug screening for membrane protein targets\",\"authors\":\"Geoffrey C. Li ,&nbsp;Manuel A. Castro ,&nbsp;Thilini Ukwaththage,&nbsp;Charles R. Sanders\",\"doi\":\"10.1016/j.yjsbx.2024.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>NMR spectroscopy has played a pivotal role in fragment-based drug discovery by coupling detection of weak ligand-target binding with structural mapping of the binding site. Fragment-based screening by NMR has been successfully applied to many soluble protein targets, but only to a limited number of membrane proteins, despite the fact that many drug targets are membrane proteins. This is partly because of difficulties preparing membrane proteins for NMR—especially human membrane proteins—and because of the inherent complexity associated with solution NMR spectroscopy on membrane protein samples, which require the inclusion of membrane-mimetic agents such as micelles, nanodiscs, or bicelles. Here, we developed a generalizable protocol for fragment-based screening of membrane proteins using NMR. We employed two human membrane protein targets, both in fully protonated detergent micelles: the single-pass C-terminal domain of the amyloid precursor protein, C99, and the tetraspan peripheral myelin protein 22 (PMP22). For both we determined the optimal NMR acquisition parameters, protein concentration, protein-to-micelle ratio, and upper limit to the concentration of D<sub>6</sub>-DMSO in screening samples. Furthermore, we conducted preliminary screens of a plate-format molecular fragment mixture library using our optimized conditions and were able to identify hit compounds that selectively bound to the respective target proteins. It is hoped that the approaches presented here will be useful in complementing existing methods for discovering lead compounds that target membrane proteins.</p></div>\",\"PeriodicalId\":17238,\"journal\":{\"name\":\"Journal of Structural Biology: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590152424000059/pdfft?md5=39c55f7648d09ecd7660ace75e9b5e22&pid=1-s2.0-S2590152424000059-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Biology: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590152424000059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152424000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振光谱法将配体与靶标的弱结合检测与结合位点的结构图绘制结合起来,在基于片段的药物发现中发挥了关键作用。基于核磁共振的片段筛选已成功应用于许多可溶性蛋白质靶点,但只应用于数量有限的膜蛋白,尽管事实上许多药物靶点都是膜蛋白。部分原因是难以制备 NMR 所需的膜蛋白--尤其是人类膜蛋白--以及膜蛋白样品溶液 NMR 光谱固有的复杂性,这需要加入膜模拟剂,如胶束、纳米盘或双胞。在此,我们开发了一种可通用的方案,利用 NMR 对膜蛋白进行基于片段的筛选。我们采用了两个人类膜蛋白靶标,它们都在完全质子化的洗涤剂胶束中:淀粉样前体蛋白 C99 的单通道 C 端结构域和外周髓鞘蛋白 22 (PMP22) 的四跨结构域。我们确定了这两种药物的最佳 NMR 采集参数、蛋白质浓度、蛋白质与胶束的比率以及筛选样品中 D6-DMSO 的浓度上限。此外,我们还利用优化条件对板式分子片段混合物库进行了初步筛选,并确定了可选择性结合到相应靶蛋白的命中化合物。希望本文介绍的方法能对发现靶向膜蛋白的先导化合物的现有方法起到补充作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing NMR fragment-based drug screening for membrane protein targets

Optimizing NMR fragment-based drug screening for membrane protein targets

NMR spectroscopy has played a pivotal role in fragment-based drug discovery by coupling detection of weak ligand-target binding with structural mapping of the binding site. Fragment-based screening by NMR has been successfully applied to many soluble protein targets, but only to a limited number of membrane proteins, despite the fact that many drug targets are membrane proteins. This is partly because of difficulties preparing membrane proteins for NMR—especially human membrane proteins—and because of the inherent complexity associated with solution NMR spectroscopy on membrane protein samples, which require the inclusion of membrane-mimetic agents such as micelles, nanodiscs, or bicelles. Here, we developed a generalizable protocol for fragment-based screening of membrane proteins using NMR. We employed two human membrane protein targets, both in fully protonated detergent micelles: the single-pass C-terminal domain of the amyloid precursor protein, C99, and the tetraspan peripheral myelin protein 22 (PMP22). For both we determined the optimal NMR acquisition parameters, protein concentration, protein-to-micelle ratio, and upper limit to the concentration of D6-DMSO in screening samples. Furthermore, we conducted preliminary screens of a plate-format molecular fragment mixture library using our optimized conditions and were able to identify hit compounds that selectively bound to the respective target proteins. It is hoped that the approaches presented here will be useful in complementing existing methods for discovering lead compounds that target membrane proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Structural Biology: X
Journal of Structural Biology: X Biochemistry, Genetics and Molecular Biology-Structural Biology
CiteScore
6.50
自引率
0.00%
发文量
20
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信